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Nanoelectromechanical Systems

H. G. Craighead, Science, 290, 1532 (2000).
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Poly-Silicon Thin Film Processing
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FIGURE 2. Surface micro-machined polycrystalline (a) Silicon process|7), and (b) Cantil-
ever beams.

—> Problems with uniformity of thin films and built-in strain
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Single Crystal Reactive Etching
and Metallization (SCREAM)

FIGURE 24. Low temperature version of SCREAM process. (a) Process sequence for low temperature
version of SCREAM that uses isolated MESA structures for an anchor and bonding pads.

Suspended single crystal silicon = E ~ 130 GPa (comparable to steel)
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MEMS Fabrication using Silicon-on-Insulator Substrates
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H. G. Craighead, Science, 290, 1532 (2000).
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Capacitive Micro-Actuator
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FIGURE 7. Capacitor micro-actuators (a) Parallel-plate micro-actuator with maximum
displacement of d. (b) Interdigitated electrode or comb drive capacitor micro-actuator with
maximum displacement proportional to [, — not d.
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Capacitive Micro-Actuator

FIGURE 8. SEM micrograph of four parallel-plate capacitors suspended by springs. The
cross in the center has been displaced downward and to the left by actuation of two sets
of plates — white plates are negative. The single crystal silicon plates are 10 pm

200 nm
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Capacitive Displacement Sensor

FIGURE 9. A high aspect-ratio (b/a) single crystal silicon device made using SCREAM
processes[63]. [Al-Interdigitated electrode micro-actuator that moves the structure to the
left when a voltage is applied tc the two sets of electrodes. [B]-Suspended spring with
supports-{C]; [D]-Moving suspended plate of a parallel-plate capacitor attached 1o the
spring and a fixed plate [E]. The parallel-plate capacitor is used to sense displacement
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Torsional Micro-Actuator
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FIGURE 15. Schematic diag of an interdigitated electrode torsional micro-actuator.
(a) Overview showing torsion rods and comb-finger or interdigitated electrode array,
(b) Force vector generated by applying a potential difference between the two electrode-
pairs, and (c) Electric field distribution showing asymmetries at top and bottom of the
electrodes{55].
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Torsional Micro-Actuator

FIGURE 14. An SEM micrograph of a single crystal silicon, torsional micro-actuator with
interdigitated electrode drives[55].
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Lucent Technologies Mirror Array

H. G. Craighead, Science, 290, 1532 (2000).
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Silicon Micromirrors and Nanowires

H. G. Craighead, Science, 290, 1532 (2000).
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Resonance Frequency of NEMS Structures

Resonant frequency of a doubly clamped beam:

_(4730)° 1 |EI
27 17\ pA

fO

Note: 2 um long, 50 nm wide wires have f, ~ 400 MHz

—> Resonance frequency inversely scales with size
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Carbon Nanotube Tweezers

¢ deposit independent
metal electrodes

¢ attach carbon
¢ nanotubes

P. Kim and C. M. Lieber, Science, 286, 2148 (1999).
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Carbon Nanotube Tweezers
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P. Kim and C. M. Lieber, Science, 286, 2148 (1999).
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Carbon Nanotube Tweezers
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Nonvolatile Carbon Nanotube Memory
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T. Rueckes, et al., Science, 289, 94 (2000).
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Strain-driven Positioning of MEMS Structures
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P. O. Vacaro, et al., Appl. Phys. Lett., 78, 2852 (2001).
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Strain-driven Positioning of MEMS Structures
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P. O. Vacaro, et al., Appl. Phys. Lett., 78, 2852 (2001).
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Microfluidic Channels

H. G. Craighead, Science, 290, 1532 (2000).
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Separation of DNA using Entropic Trapping
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FIG. 1. (a) Schematic diagram of the device. (b) Free energy
landscape for DNA in the channel. AE is the entropic free
energy difference between a DNA molecule in a thick region
and a thin region. E, and E; are the electric field at thin and
thick regions, respectively. E,, is the average electric field
over the channel.

J. Han, et al., Phys. Rev. Lett., 83, 1688 (1999).
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Separation of DNA using Entropic Trapping

J. Han and H. G. Craighead, Science, 288, 1026 (2000).
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Separation of DNA using Entropic Trapping
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FIG. 4. (a) Escape of a DNA molecule from the trap. x is the
length of DNA section in the thin region. (b) Plot ofAF vs x.
The transition state is whenx = x..

J. Han, et al., Phys. Rev. Lett., 83, 1688 (1999).
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Separation of DNA using Entropic Trapping
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J. Han and H. G. Craighead, Science, 288, 1026 (2000).
[ Department of Materials Science and Engineering, Northwestern University




	Nanomaterials
	Nanoelectromechanical Systems
	Poly-Silicon Thin Film Processing
	Single Crystal Reactive Etching�and Metallization (SCREAM)
	MEMS Fabrication using Silicon-on-Insulator Substrates
	Capacitive Micro-Actuator
	Capacitive Micro-Actuator
	Capacitive Displacement Sensor
	Torsional Micro-Actuator
	Torsional Micro-Actuator
	Lucent Technologies Mirror Array
	Silicon Micromirrors and Nanowires
	Resonance Frequency of NEMS Structures
	Carbon Nanotube Tweezers
	Carbon Nanotube Tweezers
	Carbon Nanotube Tweezers
	Nonvolatile Carbon Nanotube Memory
	Strain-driven Positioning of MEMS Structures
	Strain-driven Positioning of MEMS Structures
	Microfluidic Channels
	Separation of DNA using Entropic Trapping
	Separation of DNA using Entropic Trapping
	Separation of DNA using Entropic Trapping
	Separation of DNA using Entropic Trapping

