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Introduction to Thermoelectrics:
Seebeck Effect for Power Generation
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Introduction to Thermoelectrics:
Peltier Effect for Cooling
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Example Thermoelectric Device
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k
SZ σ2

=Thermoelectric 
figure of merit:

S = Seebeck coefficient
(voltage generated per unit temperature between two points)

σ = electrical conductivity

k = thermal conductivity

Efficiency of a Thermoelectric Device
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Competitiveness of Thermoelectrics
for Power Generation
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Competitiveness of Thermoelectrics
for Cooling Applications



Department of Materials Science and Engineering, Northwestern University

(1) Detailed analysis shows that Z is maximized when the average
electron energy deviates from the Fermi energy semiconductors

(2) To optimize σ, increase the number of free carriers

(3) To minimize k, increase phonon scattering

k
SZ σ2

=Thermoelectric 
figure of merit:

Improving Thermoelectric Figure of Merit
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Enhancing the Density of States at the Nanoscale
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http://www.cchem.berkeley.edu/~pdygrp/images/gallery/

Enhancing Phonon Scattering with Heterostructures
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Example Thermoelectric Device
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In bulk materials, thermal transport is usually explained with 
two equations:

(1) Fourier’s Law of Heat Conduction:

Heat flux:

(2) Boltzmann Transport Equation (semi-classical model that 
treats electrons and phonons as classical particles – i.e., 
wave length nature is neglected).

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

TkQ ∇−=

Exploring the Concept of Thermal Transport
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Thermal boundary resistance was first explored by Peter 
Kapitza in 1940 for the boundary between liquid helium 
and a solid.

The first model to explain this boundary resistance 
considered the acoustic mismatch at the boundary where 
the density and sound velocity discontinuously changes.

However, this simple model overestimated the boundary 
resistance by a factor of 10-100.

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Interface Effects
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The discrepancy between theory and experiment was 
attributed to the existence of a compressed layer of 
helium at the surface of the solid.

This suggests that thermal transport across boundaries can be 
strongly influenced by surface defects.

These issues complicate the thermal transport analysis of 
many nanomaterials such as superlattices.

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Importance of Defects at Surfaces and Interfaces
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Temperature is typically defined as the average kinetic 
energy of a system of particles:

Tkvm Bii 2
3

2
1 2 =

However, quantum mechanically, the collective excitation of 
atomic motions are phonons whose average kinetic 
energy is given by:

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

The Concept of Temperature
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In the limit of high temperature (kBT >> ħωλ(q)):

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

In this limit, the quantum result and the classical result are 
the same.

However, for many materials, this limit is not valid (e.g., the 
optical phonons in silicon are 62 meV ~ 750 K).

The Concept of Temperature
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2nd Lecture Begins
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However, quantum mechanically, the collective excitation of 
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atomic motions are phonons whose average kinetic 
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The Concept of Temperature
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Although temperature can be defined for a single atom 
classically, the quantum mechanical definition can only be 
localized on the length scale of the phonon mean free path.

Since most of the heat is carried by phonons with large wave 
vectors, the relevant mean free paths are on the order of 1-
100 nm.

Consequently, the notion of temperature is difficult to define 
in nanostructures, thus limiting the applicability of 
Fourier’s Law of Heat Conduction.

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Implications for Fourier’s Law
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Since the Boltzmann Transport Equation also relies a 
definition of local temperature, its applicability in 
nanostructures is limited.

Furthermore, the Boltzmann Transport Equation considers 
electrons and phonons classically, which neglects wave 
effects that are likely to become important in structures 
whose dimensions are comparable to the phonon mean free 
path and phonon wavelength.

Implications for the Boltzmann
Transport Equation
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Comparing Bulk to Thin Films
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Measuring Thermal Properties of Nanotubes
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Scanning Thermal Microscope
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Scanning Thermal Microscopy of MWNTs
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D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

In 3-D materials, phonons possess three polarizations: two 
transverse and one longitudinal.

In perfect 1-D materials, only one longitudinal polarization 
should be possible.

However, real 1-D materials possess surfaces which give rise 
to additional surface phonon modes.

The resulting change in the dispersion relation modifies the 
group velocity and density of states.

Phonon Transport in 1-D Nanostructures
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Phonon-phonon interactions change since energy conservation 
and wave-vector relations depend on the dispersion 
relation.

Furthermore, phonon boundary scattering is likely to be much 
more significant in 1-D nanostructures than 3-D materials.

The role of defects and coupling to electronic modes may also 
be significantly enhanced in 1-D nanostructures.

D. G. Cahill, et al., J. Appl. Phys., 93, 793 (2003). 

Phonon Lifetimes in 1-D Nanostructures
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D. Li, et al., Appl. Phys. Lett., 83, 2934 (2003). 

Pt wires serve
as resistive heaters
and resistance
thermometers

Measuring the Thermal Conductivity
of Silicon Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 2934 (2003). 

For all diameters, the thermal conductivity of silicon nanowires is 
approximately two orders of magnitude lower than the bulk.

Thermal Conductivity Data for Silicon Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 2934 (2003). 

For small diameters, the data appears to deviate from the Debye T3

law for specific heat.

Thermal Conductivity Data for Silicon Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Measuring Thermal Conductivity for Si/SiGe Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Thermal Conductivity Data for Si/SiGe Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Observations:

(1) At high temperature, the thermal conductivity of the 
nanowire superlattice matches a pure SixGe1-x alloy.

Alloy scattering of phonons is dominant as expected 
since the heterostructure modulation of x is only 0.1 (this 
implies that the acoustic mismatch is small, which 
minimizes interface scattering).

Thermal Conductivity Data for Si/SiGe Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Observations:

(2) The thermal conductivity of the nanowire superlattice
is much lower than pure silicon nanowires.

This behavior is also consistent with alloy scattering of 
phonons which would not be present in the pure silicon 
nanowires.

Thermal Conductivity Data for Si/SiGe Nanowires



Department of Materials Science and Engineering, Northwestern University

D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Observations:

(3) The thermal conductivity of the nanowire superlattice
decreases with decreasing nanowire diameter.

This observation suggests that boundary scattering of 
phonons is also playing a role.  However, the diameter 
dependence is much weaker than pure silicon nanowires since 
this effect is competing with significant alloy scattering.

Thermal Conductivity Data for Si/SiGe Nanowires



Department of Materials Science and Engineering, Northwestern University

D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Comments on competing scattering mechanisms:

(1) The efficiency of phonon alloy scattering follows the 
fourth power of the ratio of the defect size to phonon 
wavelength short wavelength phonons are most 
efficiently scattered by atomic scale defects in alloys.

(2) Meanwhile, long wavelength phonons are scattered by the 
nanowire boundaries.

Thermal Conductivity Data for Si/SiGe Nanowires
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D. Li, et al., Appl. Phys. Lett., 83, 3186 (2003). 

Comments on competing scattering mechanisms:

(3) As temperature is decreased, the long wavelength phonons 
play an increasingly important role in thermal transport.

(4) Consequently, the discrepancy between the thermal 
conductivity of the heterostructure nanowire and the bulk 
alloy increases with decreasing temperature.

Thermal Conductivity Data for Si/SiGe Nanowires
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K. Schwab, et al., Nature, 404, 974 (2000). 

Probing the Quantum Limit of Thermal Conductance
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K. Schwab, et al., Nature, 404, 974 (2000). 

• Resistive gold heater/thermometer at the suspended sample.
• Sensing accomplished with a SQUID thermometry circuit.

Probing the Quantum Limit of Thermal Conductance
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K. Schwab, et al., Nature, 404, 974 (2000). 

In the limit of linear response (ΔT << T),

where Tm(ω) is the transmission coefficient that characterizes 
the coupling of the waveguide modes to the reservoirs.

Thermal Conductance of Phonon Waveguides in the 
Ballistic One-Dimensional Limit
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K. Schwab, et al., Nature, 404, 974 (2000). 

In the limit of kT << ħωm, only the four lowest modes 
contribute to the thermal conductance.

For ideal coupling (Tm =1), a fundamental relation holds 
for each mode:

This quantum of thermal conductance represents the 
maximum possible value of energy transported per 
phonon mode.

Thermal Conductance of Phonon Waveguides in the 
Ballistic One-Dimensional Limit



Department of Materials Science and Engineering, Northwestern University

K. Schwab, et al., Nature, 404, 974 (2000). 

Quantum of electrical conductance is:

g0 = 2e2/h

Quantum thermal conductance is proportional to T since 
energy is being transported as opposed to quantum 
electrical conductance where charge is being transported.

Comparing Electrical and Thermal
Conductance Quantization
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Electrical experiments lead to steps in the conductance that 
are not observed in thermal experiments.

In electrical experiments, the chemical potential and 
temperature can be independently varied.  Consequently, 
at low temperature, the sharp edge of the Fermi-Dirac 
distribution function can be swept through 1-D modes.

With phonons, only the temperature can be swept.  The 
broader Bose-Einstein distribution function smears out all 
features except the lowest lying modes at low temperature.

Comparing Electrical and Thermal
Conductance Quantization

K. Schwab, et al., Nature, 404, 974 (2000). 
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K. Schwab, et al., Nature, 404, 974 (2000). 

Measurement of the Quantum Limit
of Thermal Conductance
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