Nanomaterials

Lecture 15: Nanomagnetism

Nanomagnetism

At thermal equilibrium, define:

(1) Magnetization density: $M = -\frac{1}{V} \frac{\partial F}{\partial H}$

V = volume, H = magnetic field, F = magnetic Helmholtz free energy

(2) Susceptibility:
$$\chi = \frac{\partial M}{\partial H} = -\frac{1}{V} \frac{\partial^2 F}{\partial H^2}$$

<u>NOTE</u>: Force per unit volume (*f*) exerted on a specimen by an inhomogeneous magnetic field is:

$$f = -\frac{1}{V}\frac{\partial F}{\partial x} = -\frac{1}{V}\frac{\partial F}{\partial H}\frac{\partial H}{\partial x} = M\frac{\partial H}{\partial x}$$

To determine M and χ , quantum mechanics is required; in particular, we need to consider the modification to the Hamiltonian by <u>spin</u>.

At thermal equilibrium, define:

(1) Magnetization density: $M = -\frac{1}{V} \frac{\partial F}{\partial H}$

V = volume, H = magnetic field, F = magnetic Helmholtz free energy

(2) Susceptibility:
$$\chi = \frac{\partial M}{\partial H} = -\frac{1}{V} \frac{\partial^2 F}{\partial H^2}$$

<u>NOTE</u>: Force per unit volume (*f*) exerted on a specimen by an inhomogeneous magnetic field is:

$$f = -\frac{1}{V}\frac{\partial F}{\partial x} = -\frac{1}{V}\frac{\partial F}{\partial H}\frac{\partial H}{\partial x} = M\frac{\partial H}{\partial x}$$

To determine M and χ , quantum mechanics is required; in particular, we need to consider the modification to the Hamiltonian by <u>spin</u>.

- (1) <u>Diamagnetism</u>: negative susceptibility
 - \rightarrow induced moment opposes applied field (similar to Lenz's Law)
 - \rightarrow common for noble gas atoms and alkali halide ions

 $(e.g., He, Ne, F^-, Cl^-, Li^+, Na^+, ...)$

- (2) <u>Paramagnetism</u>: positive susceptibility
 - → induced moment is favored by applied field (but is opposed by thermal disorder)
 - \rightarrow magnetization is immediately lost upon removal of field
 - → common for isolated rare earth ions, iron (group 3d) ions (e.g., Sm⁺, Er⁺, Fe³⁺, Co²⁺, Ni²⁺,)

Magnetic Ordering

In solids, electron-electron interactions lead to magnetic ordering (one of the less well-developed theories in solid state physics)

Types of interactions:

- (1) Exchange interaction (electrostatic)
- (2) Dipolar interaction (spin-spin coupling)
- (3) Anisotropy interaction (spin-orbit coupling)

Exchange Interactions

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

Types of Magnetic Ordering

If magnetic interactions are consequential and the temperature is below T_c , a solid can exist in the following magnetically ordered states even with no applied field:

- (1) <u>Ferromagnetic</u>: all local moments have a positive component along the direction of the spontaneous magnetization
- (2) <u>Antiferromagnetic</u>: individual local moments sum to zero total moment (no spontaneous magnetization)
- (3) <u>Ferrimagnetic</u>: local moments are not all oriented in the same direction, but there is a non-zero spontaneous magnetization

Types of Magnetic Ordering

Typical distribution of directions for the local magnetic moments when no magnetic field is present (a) in a solid with inconsequential magnetic interactions, (b) in a ferromagnetic solid below its critical temperature, and (c) in an antiferromagnetic solid below its critical temperature. Cases (b) and (c) illustrate magnetically ordered states.

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

Types of Magnetic Ordering

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

"Unusual" Behavior of Iron

Even though T_c for iron is >1000 K, iron is normally "unmagnetized" at room temperature

However,

(1) Iron is more strongly attracted by magnetic field than a paramagnetic material

(2) Iron can be "magnetized" by stroking it with a permanent magnet

<u>Why</u>? We need to consider "weak" interactions besides electrostatic exchange coupling

Ferromagnetic Domains

- <u>Note</u>: (1) Exchange coupling is 1000X greater than dipolar coupling for nearest neighbors
 - (2) <u>But</u>, exchange coupling is short ranged (falls off exponentially) compared to dipolar coupling (1/r³)
- \rightarrow In large samples, dipolar coupling can alter spin configurations favored by short range exchange coupling
- \rightarrow Overall magnetic energy is minimized by formation of domains

Ferromagnetic Domains

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

Domain Boundaries

- Upon domain formation, dipolar energy (bulk effect) is minimized and exchange energy is only raised for a small number of sites at the domain boundary → domain boundaries are gradual
- Domain boundaries are not infinitely large due to spin-orbit coupling
- Overall spin energy depends on angle of spin with respect to crystal axes → anisotropy energy
- Domain wall thickness is dictated by a competition between exchange and anisotropy energies

Domain Boundaries

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

Magnetization of "Unmagnetized" Iron

- (1) In small fields, domains reversibly align with fields by smooth motion of domain walls
- (2) At high fields, domains irreversibly align with fields → defect mediated process → defects can prevent domain walls from returning to original zero bulk magnetization
- \rightarrow Magnetization of iron (non-zero bulk magnetization at zero field)
- → A reverse field is required to return to zero bulk magnetization (coercive force)
- → Hysteresis in $B = H + 4\pi M$ vs. *H* curves

Magnetic Hysteresis

N. W. Ashcroft and N. D. Mermin, Solid State Physics, Harcourt, 1976.

Hierarchy of Computer Memory

http://computer.howstuffworks.com/computer-memory1.htm

Magnetic Miniaturization

Capacity of magnetic hard disks:

- 1980's: 30% growth per year
- early 1990's: 60% growth per year
- late 1990's: 130% growth per year
- disk capacity doubling every 9 months (twice the pace of Moore's Law)

J. W. Toigo, Scientific American, 282, 58 (2000).

Economics of Magnetic Storage

J. W. Toigo, Scientific American, 282, 58 (2000).