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Characterization of Stimulated Emission
from Encapsulated SWNTs

M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Effect of Aggregation and pH
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M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Pump Spectral Dependence
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* The measured E,, transition
width of 65 meV 1s consistent with
fast electron-electron scattering on
the 300 fs time scale.
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 The feature near 1.4 eV 1s likely
due to a Raman effect (the
measured difference between
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M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Probe Spectral Dependence
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e The probe modulation
spectrum 1s slightly red-shifted
from the absorbance spectrum
by 45 cm™!.

* From a Lorentzian fit, the
width of the E,, transition 1s
only 10 meV compared with 65
meV as measured for the E,,
transition.

M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Polarization Dependence
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Co-polarized pump and probe lead to greater photobleaching than
cross-polarized as expected for a 1-D system.

M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Pump Saturation Effects
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At low pump intensities below 10
W/cm?, linear behavior is observed.

Saturation of the probe modulation
1s consistent with:

» Increased multi-particle Auger
recombination for large carrier
densities.

> Exciton-exciton annihilation
effects.

» Saturation and filling of a finite
number of states.

M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Probe Saturation Effects
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- 5ump
6 l— <A> * X corresponds to the probe intensity
O for which the rate of stimulated

recombination is equal to the intrinsic
rate of recombination.

 An increase 1n X, at large pump
intensities 1s consistent with an increase
in the effective interband recombination
rate due to enhanced Auger
recombination for large carrier densities.
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M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Degenerate Pump-Probe Measurements
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Temporal Relaxation at E,,

Normalized differential transmission
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An Estimate of the Optical Gain
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Optical Absorption Spectra for
DNA Encapsulated SWNTSs
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Characterization of Stimulated Emission
from Encapsulated SWNTs

M. S. Arnold, et al., Nano Letters, 3, 1549 (2003).
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Density of DNA encapsulated SWNTs:
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p, = areal density of graphite = 7.66x10-% g/cm?
P = Volume density of hydrated DNA in iodixanol = 1.12 g/cm?

M. S. Arnold, et al., Nano Letters, 5, 713 (2005).
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Density Gradient Centrifugation of
DNA Encapsulated SWNTSs
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— DNA hydration layer thickness of 2 — 3 nm

M. S. Arnold, et al., Nano Letters, 5, 713 (2005).
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Separation of DNA Encapsulated
SWNTs by Diameter

+«—Density
«<—Diameter

M. S. Arnold, et al., Nano Letters, 5, 713 (2005).
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Correlating Diameter and Density
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 Density of DNA encapsulated SWNTs increases with increasing diameter.
* Separation 1s most effective at small diameters.

M. S. Arnold, et al., Nano Letters, 5, 713 (2005).

[ Department of Materials Science and Engineering, Northwestern University




	Nanomaterials
	Carbon Nanomaterials
	Characterization of Stimulated Emission�from Encapsulated SWNTs
	Characterization of Stimulated Emission�from Encapsulated SWNTs
	Effect of Aggregation and pH
	Pump Spectral Dependence
	Probe Spectral Dependence
	Polarization Dependence
	Pump Saturation Effects
	Probe Saturation Effects
	Degenerate Pump-Probe Measurements
	Temporal Relaxation at E11
	An Estimate of the Optical Gain
	Optical Absorption Spectra for�DNA Encapsulated SWNTs
	Optical Absorption Spectra for�DNA Encapsulated SWNTs
	Characterization of Stimulated Emission�from Encapsulated SWNTs
	Optical Absorption Spectra for�DNA Encapsulated SWNTs
	Density of DNA Encapsulated SWNTs
	Density Gradient Centrifugation of�DNA Encapsulated SWNTs
	Separation of DNA Encapsulated �SWNTs by Diameter
	Correlating Diameter and Density

