CHM 696-11: Week 8

Instructor: Alexander Wei

Optical Properties of Metal Nanoparticles and Nanoparticle Assemblies

Review:

Wei, Q.; Wei, A. In Supramolecular Chemistry of Organic-Inorganic Hybrid Materials (Chapter 10), Mañez, R. M.; Rurack, K., Eds.; Wiley and Sons: New York, 2010; pp. 319-349

Plasmon-resonant nanoparticles

Surface plasmon (SP): collective excitation of conduction electrons, using light at a resonant (visible to NIR) frequency

Plasmon-enhanced extinction:

 $\varepsilon = 10^9 - 10^{11} \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$ $C_{\rm sca} = 10^{-13} - 10^{-9} \, \rm cm^2$ $\phi_{\rm sca} = 0.04 - 0.90$

Ag NPs (20-150 nm): $\lambda_{SP} = 380-600 \text{ nm}$

 $\lambda_{SP} = 520-660 \text{ nm}$

Lycurgus Cup, 4th century A.D.

> (Ag-Au NP's embedded in glass)

Scattering from single Au nanospheres

Absorption: red

Scattering: green

British Museum, London

Manifestations of Surface Plasmons

III. Coupled plasmons in nanoparticle aggregate or array

For a primer on surface plasmons, see: *Nanoparticles: Building Blocks for Nanotechnology*, Ed. V. M. Rotello, Kluwer Academics: New York, 2004; Chapter 7 (Wei)

Physical description of localized SPRs

Free-electron behavior in metals: the Drude model

Polarizability or oscillator strength α defined by the Clausius-Mosotti (a.k.a. Lorentz-Lorenz) equation:

$$\alpha = 4\pi\varepsilon_0 R^3 \left| \frac{\varepsilon - \varepsilon_d}{\varepsilon + 2\varepsilon_d} \right|$$

Complex dielectric function $\varepsilon = \varepsilon'(\omega) + i\varepsilon''(\omega)$;

Resonance achieved with $\varepsilon'(\omega) = -2\varepsilon_d$, $\varepsilon''(\omega) << 1$

Given a plasma frequency ω_p such that $\varepsilon(\omega_p) = 0$:

$$\varepsilon'(\omega) \approx 1 - \frac{\omega_p^2}{\omega^2 + \Gamma^2}$$
 $\varepsilon''(\omega) \approx \frac{\omega_p^2 \Gamma}{\omega(\omega^2 + \Gamma^2)}$

Ideally,
$$\omega_{SP} \approx \frac{\omega_p}{\sqrt{2\varepsilon_d + 1}}$$

However, free-electron response is coupled with interband transitions (e.g., $Au(5d\rightarrow6s)$), which changes ω_{SP}

where Γ is the plasma relaxation frequency.

Only metals with low $\varepsilon''(\omega)$ at ω_{SP} will exhibit strong plasmon resonance: $\mathbf{Ag} > \mathbf{Au} > \mathbf{Cu}$

Physical description of plasmons (cont'd)

Electrodynamic Mie Theory

Can calculate dipolar optical response with great accuracy, especially if performed under "quasi-static" conditions (valid when particle size is less than 30 nm)

<u>Generalized Mie Theory:</u>

Can calculate approximate optical response for metal nanoparticles of all shapes and sizes; accounts for higherorder effects such as phase retardation, quadrupolar resonances, etc.

Calculated plasmon response from spherical Au nanoparticles in H₂O:

Yguerabide, Anal. Biochem. **1998**, *262*, 137.

Calculated response (extinction) from metal nanoparticles (in air):

Kriebig and Vollmer, Optical Properties of Metal Clusters, c.1995.

Size effects on localized SPRs

Surface scattering of oscillating electrons: plasmon lineshape (Γ) broadens with 1/R

<u>Phase retardation</u>: redshift and broadening of λ_{SP} for particles greater than L_E , the electron mean free path (40-50 nm)

<u>Higher-order plasmon resonances</u>: increase in probability with larger particle size (also a function of L_F)

Calculated plasmon response from spherical Ag nanoparticles in $\rm H_2O$: Yguerabide, *Anal. Biochem.* **1998**, *262*, 137.

Electric field L = 3