CHM 696-11: Week 6

Instructor: Alexander Wei

Self-Assembled Monolayers Supramolecular Surface Science

Reviews: Ulman, Chem. Rev. 1996, 96, 1533.

Flink et al, *Adv. Mater.* **2000**, *12*, 1315.

Love et al, Chem. Rev. 2005, 105, 1103.

Self-assembled monolayers (SAMs)

Two types of media for SAM formation:

1) At biphasic (air-solvent or solvent-solvent) interfaces

Figure 1 Preparation and structure of LB films. (a) A disordered, low-density amphiphile film at the airwater interface is compressed by means of a movable barrier. Movement of a polar substrate through the interface transfers the compressed monolayer, with hydrophilic groups facing the substrate. (b) Idealized structures of Y-, Z-, and X-type LB films.

Langmuir-Blodgett transfer: asssembling and depositing SAMs onto substrates

Self-assembled monolayers (SAMs)

2) SAMs of chemisorptive ligands on solid substrates

Many examples of chemisorptive SAMs: Alkanethiols on Au/Ag; carboxylates on metal-oxide surfaces, etc.

Substrates and surfaces: an introduction to crystalline lattice planes

Face-centered cubic (fcc) structure: Predominant in metals (Au, Ag, Fe...)

a.k.a. ABC stacking

FCC lattice planes and slip planes

[100] plane: square lattice

[111] plane: triangular or hexagonal lattice

Self-assembly of alkanethiols on Au(111)

Construction of an alkanethiol SAM:

Poirier and Pylant, *Science* **1996**, *272*, 1123; 1145-48 Poirier, *Chem. Rev.* **1997**, *97*, 1117

- Submonolayer phase: highly mobile ligands
- Formation of "striped" domains
- Surface saturation; striped domains dominant
- Phase transition to "upright" monolayers
- Maximum coverage by upright SAMs

Intermediate stage of alkanethiol self-assembly on Au(111) surface as characterized by constant-current STM. Zigzag features are bare, reconstructed Au surface. Striped features are islands of alkanethiol molecules, arranged in rows, and with surface-aligned molecular axes. Dark depressions, such as in bottom center, are islands of Au atom vacancies.

Epitaxial relationship between Au(111) and alkanethiol SAM: $\sqrt{3} \times \sqrt{3}$ R 30°

DuBois and Nuzzo, Annu. Rev. Phys. Chem. 1992, 43, 437.

Au(111) substrate

C8 thiol SAM

'Herringbone' packing

Structural Characterization of SAMs on Au

X-ray photoelectron spectroscopy (XPS): surface atom content, bonding

Surface IR spectroscopy (RAIRS, PM-IRAS): functional groups, conformation

Surface-enhanced Raman scattering (SERS) (nanostructured substrates)

Ellipsometry: estimation of SAM thickness

Near-edge X-ray adsorption fine structure spectroscopy (NEXAFS): determination of molecular tilt angle

XPS "doublet" of S, unbound (free thiol)

S bound to Au (thiolate)

Deconvoluted spectrum of free and bound S, in a 2:3 ratio

Buelen et al, Langmuir 1998, 14, 6424.

Alkanethiol SAMs on Au:

X-(CH₂)_n-SH: Spontaneous 2D ordering for n > 8

Variations in SAM structure:

1) Odd-even effects

Differences observable by surface IR: Laibinis et al, *JACS* **1991**, *113*, 7152.

2) Steric effects

Headgroup packing geometry can create incommensurate lattice w.r.t. Au(111)

Delamarche et al, *Adv. Mater.* **1996**, *8*, 719.

Surface properties of alkanethiol SAMs on Au

Wettability: contact angle measurements

(but droplet shape strongly influenced by contact line)

 γ_{SV} = interfacial surface energy (solid-vapor) $\gamma_{SV} - \gamma_{SL} = \gamma_{LV} cos\theta$ (Young-Dupre equation)

Contact angle and desorption energy (E_a) vs. log(Partition coeff.)

DuBois and Nuzzo, Annu. Rev. Phys. Chem. 1992, 43, 437.

Stability of Alkanethiol SAMs on Au

Garrell et al, *JACS* 1995, 117, 11563.

Other examples of SAM-forming molecules

Phenylethynyl- and biphenylthiols Ulman, *Acc. Chem. Res.* **2001**, *34*, 855.

Sulfides

Beulen et al, *Langmuir* **1996**, *12*, 6170. Shelly et al, *Langmuir* **2002**, *18*, 1791.

Increasing ligand chemisorption: examples

Multivalent ligands

Balasubramanian et al, Langmuir **2002**, *18*, 3676. Hu et al, Langmuir **2004**, *20*, 4933.

Carbodithioates

Colorado et al, *Langmuir* **1998**, *14*, 6337.

Zhao et al, *JACS* **2005**, 127, 7328.

Functionalized SAMs

Example of a photoactive SAM with azobenzene groups:

SiO₂ (glass) surface

Ueda et al, Israel J. Chem. 1996, 36, 371.

Naumann et al, Angew. Chem. 1995, 34, 2056.

SAMs and sensor technologies

Common sensor modalities:

- Electrochemical: potentiometry, voltammetry (ion sensing); impedance spectroscopy (changes in capacitance)
- Optical: surface plasmon resonance (SPR) (changes in local refractive index); fluorescence-based detection (can be quenched by Au substrate)
- 3) Spectroscopic: surface IR, SERS
- Piezoelectric (mass sensing): Quartz crystal microbalance (QCM)
- 5) AFM: Chemical Force Microscopy (direct measurement of noncovalent interactions)

Motesharei and Myles, JACS 1998, 120, 7328.

Schonherr et al, JACS 2000, 122, 4963.

SAMs and sensor technologies

Quartz Crystal Microbalance (QCM): Detection of adsorbed gases

Ex. cavitand tetrasulfides on Au(111)

Fig. 4. Changes of frequencies Δf as a function of time t during exposure of monolayers of resorcin[4]arene and didecylsulfide to different concentrations $c_{\text{C}_2\text{Cl}_4}$ in synthetic air at T=303 K. For simplification, the noise of the signal, \pm (2 to 3) Hz (which mainly results from small fluctuations of the temperature, which affect the oscillation frequency of the quartz), is omitted here.

