CHM 696-11: Week 4-A

Instructor: Alexander Wei

Hydrogen Bonds & other Directional Motifs Encoded Self-Assembly

Noncovalent bonds as directing motifs

Lewis acid-base interaction (dative bonding)

Dipole-induced dipole interactions

Metal-ligand coordination

Hydrogen bonding

$$X_1-H\cdots X_2$$

...where X_1 , X_2 are more electronegative than H

Directing vs. non-directing hydrogen bonds

N+-H N/O	<i>HB length:</i> 1.7–1.9 Å
N-H ··· ⁻ O (carboxylate, <i>N</i> -oxide, etc.) N-H ··· N	1.93 Å
N-H ··· O=C (carbonyl)	1.97–2.0 Å
"supporting" HB's	
N-H ··· OR ₂ (ether)	> 2.0 Å
O-H ··· N/O (alcohol)	

Data from Jeffrey and Saenger,

Hydrogen Bonding in Biological Structures

Some gas-phase enthalpies of hydrogen bonds (kcal/mol):

Secondary interactions in hydrogen bonding

$$K_a(CDCI_3, 298 \text{ K}) = 10^4 - 10^5$$

$$K_a(CDCl_3, 298 \text{ K}) = 1.7 \times 10^4$$

$$K_a(CDCI_3, 298 \text{ K}) = 170$$

3-aminoA

$$K_a(CDCI_3, 298 \text{ K}) = 90$$

Secondary interactions in hydrogen bonding

ADA-DAD:
$$K_a(CDCl_3) = 78$$

AAA-DDD: $K_a(CDCl_3) > 10^5!$

AAA-DD⁺D:
$$K_a(CDCl_3) > 5 \times 10^5$$

Bell and Anslyn, *Tetrahedron* **1995**, *51*, 7161

Cooperativity in Hydrogen Bonding

σ-cooperativity (only σ-bonds involved)

π-cooperativity("vinylogous" H-bonding)

$$\begin{array}{c} \delta^{+} & \stackrel{\downarrow}{O} & \delta^{-} \\ & \delta^{-} & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{O} & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{H} & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} \\ & \stackrel{\downarrow}{N} & \stackrel{\downarrow}{N} \\ & \stackrel$$

Connectivity can be extended or cyclic:

Bulk materials; crystal engineering

Inclusion complexes, biological motifs (structures with finite dimensions)

Cooperative hydrogen bonding in x-ray crystal structures

extended HB network: peptide β -sheets

Antiparallel β -sheet

Parallel β-sheet

=0.1.96 Å

Cyclic hydrogen bonding: DNA base pairs

From Jeffrey and Saenger,

Hydrogen Bonding in Biological Structures

SUPRAMOLECULAR SELF-ASSEMBLY

- An extension of molecular recognition
- Thermodynamically driven process; ideally, should produce the lowest energy system (assuming microreversibility)
- Self-assembled supermolecules (discrete number of programmed components)
- II. Supramolecular assemblies: polymolecular arrays with some control over orientation
 - a. Solid and liquid crystals "by design"
 - b. Self-assembly of amphiphiles: vesicles and bilayer membranes

Reviews: Lehn's "Supramolecular Chemistry," Ch. 8-9; Lawrence, Jiang and Levitt, Chem. Rev. 1995, 95, 2229

Self-assembly: dimers (N=2)

2 types: Heteromeric (host-guest complexes)

"Homomeric" (self-complementary)

Dimerization easily characterized by NMR, fluorescence, etc.

Molecular geometry is important:

Ducharme and Wuest, *J. Org. Chem.* **1988**, *53*, 5787 Gallant et al, *J. Org. Chem.* **1991**, *56*, 2284

Self-assembly: N > 2 (aggregates)

More difficult to characterize quantitatively— "many-bodied problem"

Techniques used to estimate size of aggregate:

- Titration experiments (need to know endpoints)
- Vapor phase osmometry (VPO): estimation of mol. wt.
- Gel permeation or size-exclusion chromatography: based on hydrodynamic volume of aggregate

New thermodyamic issues:

- Enthalpic gain (sum of all molecular interactions)
- Statistical entropy: N subunits form 1 supermolecule;
 population change = N-1

Cooperativity in self-assembly

Dimer formation: K_2 defined by 2 A \longrightarrow A₂

N-aggregate: K_N defined by $NA \longrightarrow A_N$

Positive cooperativity: $K_N > (K_2)^{N-1}$

(or K^N , depending on number of interactions)

Negative cooperativity: $K_N < (K_2)^{N-1}$

$$K_3$$
 (CDCl₃) = 8.3 x 10⁵ M⁻²

$$K(CDCI_3) = 46 \text{ M}^{-1}$$

 $K^2 = 2116 \text{ M}^{-2}; K^3 = 9.7 \times 10^4 \text{ M}^{-3}$

Examples of self-assembled supermolecules (N = 4)

The G-Quartet

Figure 4. A self-assembling G-quartet. The subunits interact through hydrogen bonds, although the nucleating metal ion is necessary for this formation.

DNA telomeres: "end caps" in chromosomes

Folate tetramer: Self-assembly into liquid crystal

Ciuchi et al, *JACS* **1994**, *116*, 7064 Gottarelli et al, Helv. Chim Acta, **1996**, *79*, 220

More examples of self-assembled supermolecules (N = 4)

Isoguanosine tetramer:
Tirumala and Davis, *JACS*, **1997**, *119*, 2769

Thumaia and Davis, 07.00, 1001, 110, 2

Cooperative [2+2] complex as a supramolecular "host":
Drain et al, *Chem. Comm.*, **1993**, 243

Ks = 109-10'0 m3 in acctone

(IsoG)₄ 4

(IsoG)₈-K⁺ 5

Examples of self-assembled supermolecules (N = 6)

Encoded self-assembly: Rosette-like structures Marsh et al, *Chem. Comm.*, **1996**, 1527 Mascal et al, Angew. Chem. **1996**, *35*, 2204

Characterized by:
VPO (mw 2600 10%; 2511 actual)
GPC (mw > 2200)
X-ray crystallography

Fig. 1 Proposed self-assembly of the self-complementary heterocycles 1 and 2 into a supramolecular macrocycle M; schematic and structural representation (A/D; hydrogen acceptor-donor site)

Non-coded self-assembly: Yang et al, *Tetrahedron Lett.*, **1994**, *35*, 3665

Characterized by VPO for concentrations above 10 mM (mw 4600-4900; 4531 actual)

More examples of self-assembled supermolecules (N = 6)

Surface complementarity in self-assembly: steric effects Zimmerman et al, *Science* **1996**, *271*, 1095

Packing effect: secondary van der Waals interactions

MW = 19,062

MW = 16,932

Supramolecular rosettes (N = 6)

Rosette-calixarene hybrid cage structure: Vreekamp et al, Angew. Chem. 1996, 35, 1215

NH₂
NH₂
NH₂
NH₂
NH_N
NH
NH
NH
NH
NH
R₁
RO OR OR OR

$$RO$$
 OR OR OR

 RO OR OR OR

 RO RO RO RO RO RO RO RO

Melamine units

Barbituric acid unit

Self-assembly and statistical entropy

Multilevel rosettes: Whitesides et al, Acc. Chem. Res. 1995, 28, 37

Figure of merit for supramolecular stability:

<u>HB</u> N-1

Self-assembly in three dimensions

Supramolecular encapsulation of guest molecules

1. Cram's carcerands: *Nature* **1992**, 356, 29.

2. Rebek's self-assembling "softballs:" *Acc. Chem. Res.* **1999**, 32, 278.

Guests: CH₄, H₂C=CH₂, Xe

Guests: benzene, cyclohexane, p-xylene

Encapsulation of multiple guests: a nanoreactor?

Table 2. Molecular Volumes and Occupancy Factors for Some Guests in the Softball 1b

guest	molecular vol (Å3)	occupancy factor
23a	155	0.52
24	185	0.62
23b	137	0.46
26	181	0.60
27	188	0.63
23c	157	0.52
benzene	77	0.26
p-xylene	105	0.35

Encapsulation of 23a, etc. is entropically driven:

Modest rate acceleration for Diels-Alder reaction:

$$k_2 = 0.41 \text{ l mol}^{-1} \text{ d}^{-1}$$
 p -xylene-d₁₀

 k_{cat} (with softball dimer) = 1.0 I mol⁻¹ d⁻¹

Rebek, Acc. Chem. Res. 1999, 32, 278.

Self-assembly in three dimensions: peptide nanotubes

D/L cyclic peptides: Granja and Ghadiri, *JACS* **1994**, *116*, 10785

Figure 1. Schematic representation of the self-assembled ubular transmembrane channel structure embedded in a lipid bilayer membrane emphasizing the antiparallel ring stacking, the presence of extensive interactions, and side chann-lipid interactions (for clarity, most side chains are omitted). The chemical structure of the peptide subunit is shown on the top (D- or L- refers to the amino acid chirality).

Enantioselective self-recognition: Ghadiri et al, *Angew. Chem.* **1995**, *34*, 93; 85

