Physical basis for the π -cation effect: an ion- quadrupole interaction

Gas-phase ion studies of benzene-cation complexes: Sumner, Nishizawa, and Kebarle, *J. Phys. Chem.*, **1981**, *85*, 1814

ion	Li ⁺	Na ⁺	K ⁺	Rb ⁺	NH ₄ ⁺	N(Me) ₄ ⁺	H ₂ O	NH ₃	
∆H _f ° (benzene-M⁺)	38	28	19	16	19	9	1.8	1.4	

Computational studies of 2:1 benzene-cation complexes in the gas and aqueous phase: Kumpf and Dougherty, *Science*, **1993**, *261*, 1708

ion	Li ⁺	Na ⁺	K ⁺	Rb ⁺
ΔE_{gas}^{bind} (benzene ₂ -M ⁺)	47.7	38.6	35.4	28.7
G ^{sol} (M ⁺)	122	98	81	75
$\Delta\Delta G_{aq}^{sol}$ (benzene ₂ -M ⁺) (relative to K ⁺)	30	15.9	0	4.4

Gas-phase data and computations suggest K⁺ ion is selectively (de)solvated by multiple aromatic rings; implication for ion channels and transmembrane transport

Solvent effects on weak intermolecular forces

1. The "classic" hydrophobic effect

$$\mathbf{X} \bullet (H_2O)_m + \mathbf{Y} \bullet (H_2O)_n \longrightarrow \mathbf{X} \bullet \mathbf{Y} + (H_2O)_{m+n}$$

$$\Delta H_a^{\circ} \gtrsim 0; \ \Delta S^{\circ} > 0$$

2. Enthalpy-Entropy compensation

$$\Delta G_a{}^\circ = \Delta G_{complexation} + \Delta G_{solvation}$$

$$\Delta H_a{}^\circ = \Delta H_{complexation} + \Delta H_{solvation}$$

$$typically < 0 \qquad \qquad H_s(\textbf{X} \bullet \textbf{Y}) + H_{solv-solv} - H_s(\textbf{X}) - H_s(\textbf{Y})$$

$$\Delta S^\circ = \Delta S_{complexation} + \Delta S_{solvation}$$

$$S(\textbf{X} \bullet \textbf{Y}) - S(\textbf{X}) - S(\textbf{Y}) \qquad \qquad typically > 0$$

$$(binding sites)$$

If binding is tight, $|\Delta S_{complex}|$ is large If binding is loose, $|\Delta S_{complex}|$ is small

Main source of enthalpy-entropy compensation

Enthalpy-entropy compensation: Case Studies

Case II: Porphyrin hosts with variable guests in nonpolar solutions

Hayashi et al, JACS, 1997, 119, 7281

Figure 3. X-ray crystal structure of 1-4f complex. The solvent molecules are omitted for clarity: (a) top view of one molecular structure and (b) side view for one molecular structure.

2 HB's

2 HB's + 1 bifurcated HB 2 HB's + 2 bifurcated HB

Figure 4. Comparison of thermodynamic parameters between 1·4 and 2·4 complexation in toluene at 298 K. (a) $-\Delta G^{\circ}$, (b) $-\Delta H^{\circ}$, and (c) $-T\Delta S^{\circ}$.

Figure 5. Enthalpy—entropy compensation plot for 1 and 2 with a series of 4 in toluene at 298 K. All plots in the graph refer to the entries in Tables 1 and 2.

Enthalpy-entropy compensation: Case Studies

Case I: β -Cyclodextrin (n=7) with variable guests in aqueous solution

Table I. Complex Stability Constant (K) and Thermodynamic Parameters in kcal/mol for 1:1 and/or 1:2 Inclusion Complex Formation of Naphthalene Derivatives with α -, β -, and γ -Cyclodextrins in Water at 25 °C^a

host	guest	stoichiometry (n)b	$\log K_n$	$-\Delta G$	- Δ <i>H</i>	TΔS
α	2-naphthalenesulfonate (2)	1	2.56 ± 0.01	3.49	0.78 ± 0.07	2.71
p	2,7-naphthalenedisulfonate (4)	1	0.98 ± 0.06	1.34	5.99 ± 0.05	-4.65
α	1-naphthaleneacetate (7)	1	2.94 ± 0.04	4.01	0.74 ± 0.01	3.27
В	1-naphthalenesulfonate (1)	1	3.40 ± 0.06	4.64	1.49 ± 0.05	3.15
В	2-naphthalenesulfonate (2)	1	5.37 ± 0.07	7.33	7.01 ± 0.06	0.32
В	2,6-naphthalenedisulfonate (3)	1	3.29 ± 0.05	4.49	2.79 ± 0.07	1.70
3	2,7-naphthalenedisulfonate (4)	. 1	2.44 ± 0.02	3.33	6.75 ± 0.08	-3.42
3	2,3,6-naphthalenetrisulfonate (5)	1	2.22 ± 0.03	3.03	3.09 ± 0.15	-0.06
3	4-amino-1-naphthalenesulfonate (6)	1	1.70 ± 0.03	2.32	2.38 ± 0.04	0.06
В	1-naphthaleneacetate (7)	1	4.35 ± 0.05	5.93	1.11 ± 0.06	4.82
γ	2-naphthalenesulfonate (2)	1	1.58 ± 0.03	1.58	4.18 ± 0.07	-2.60
		2	2.59 ± 0.07	4.11	5.73 ± 0.06	-1.62
γ	2,7-naphthalenedisulfonate (4)	1	2.58 ± 0.02	3.52	0.86 ± 0.01	2.66
γ	4-amino-1-naphthalenesulfonate (6)	1	1.31 ± 0.08	1.79	6.70 ± 0.13	-4.91

⁶ Determined calorimetrically in buffered aqueous solution at pH 7.20 (0.1 M sodium phosphate); average of more than three independent runs. ⁶ Guest/host ratio.

50,4

2: (3)

Inoue et al, JACS, 1993, 115, 475

Figure 1. Free energy $(-\Delta G)$, enthalpy $(-\Delta H)$, and entropy changes $(T\Delta S)$ for the inclusion complexation of naphthalene derivatives 1-7 with β -cyclodextrin in a buffered aqueous solution (pH 7.20) at 25 °C.

Entropically driven complexation

Enthalpically driven complex.

Enthalpy-entropy compensation: Summary

Assuming a constant (linear) relation between ΔS and ΔH :

$$T\Delta S^{\circ} = \alpha \Delta H^{\circ} + T\Delta S_{0}^{\circ}$$
$$\Delta G^{\circ} = (1-\alpha)\Delta H^{\circ} - T\Delta S_{0}^{\circ};$$

$$\Delta\Delta G^{\circ} = (1-\alpha)\Delta\Delta H^{\circ}$$

Case I (naphthalenesulfonate-cyclodextrin complexation): $\alpha = 0.90$ Inoue et al., *J. Am. Chem. Soc.*, **1993**, *115*, 475

Case II (porphyrin-quinone complexation): $\alpha = 0.62$ Hayashi et al., *J. Am. Chem. Soc.*, **1997**, *119*, 7281

Enthalpy-entropy compensation: Solvent effects

Case IV: Cyclophane host with pyrene guest in variable solutions:

 ΔH_{comp} , ΔS_{comp} remains constant

Table II. Enthalpic (ΔH°) and Entropic $(T\Delta S^{\circ})$ Contributions to the Free Energies of Formation ΔG° of Complex 1 in Solvents of Different Polarity

run	solvent	ΔG° ,* kcal mol ⁻¹	ΔH°, kcal mol ⁻¹	$T\Delta S^{\circ}$, kcal mol ⁻¹
1	2,2,2-trifluoroethanol	-7.8 ± 0.1	-20.0 ± 0.2	-12.2 ± 0.2
2	methanol	-6.4 ± 0.1	-12.0 ± 0.2	-5.6 ± 0.2
3	ethanol	-6.1 ± 0.1	-11.0 ± 0.2	-4.9 ± 0.2
4	N-methylacetamide	-5.8 ± 0.1	-9.0 ± 0.2	-3.2 ± 0.2
5	N-methylformamide	-5.1 ± 0.1	-5.6 ± 0.1	-0.5 ± 0.1
6	N.N-dimethylacetamide	-4.4 ± 0.1	-2.0 ± 0.4	$+2.4 \pm 0.4$
7	acetone	-4.3 ± 0.1	-6.6 ± 0.4	-2.3 ± 0.4
8	dimethyl sulfoxide	-3.9 ± 0.2	-6.4 ± 0.2	-2.5 ± 0.2
9	N,N-dimethylformamide	-2.9 ± 0.2	-3.7 ± 0.2	-0.8 ± 0.2
10	tetrahydrofuran	-2.7 ± 0.2	-3.0 ± 0.2	-0.3 ± 0.2
11	chloroform	-2.3 ± 0.2	-3.1 ± 0.2	-0.8 ± 0.2
12	benzene	-1.5 ± 0.2	-0.8 ± 0.2	$+0.7 \pm 0.2$

The ΔG° values in runs 8-12 were obtained in deuterated sovlents, whereas all calorimetric data result from protonated solvents. The amounts of 1% (v/v) Me₂SO (in run 1) and 10% (v/v) Me₂SO (in runs 4 and 5) were cosolvents in binding titrations to determine ΔG° , which introduces a nondetermined minor error into the concentrations used to transform measured heats into enthalpies. ${}^{b}\Delta G^{\circ}$ value from calorimetric titration.

Smithrud et al, JACS, 1991, 113, 5420

Figure 2. Isoequilibrium relationship between the enthalpy (ΔH°) and the entropy (ΔS°) for the formation of complex 1 at T = 303 K in various solvents. For the numbering of the solvents, see Table II.

Observations:

- 1) host-guest complex formation is enthalpically driven (in most cases)
- 2) enthalpy-entropy compensation is in effect ($\alpha = 0.72$)

Cases where $\Delta S^{\circ} > 0$: possibly due to release of caged solvent ($\Delta H^{\circ} > 0$ as well, due to differences in van der Waals)

π - π interactions

Alkylthymidine receptor: Hamilton and Van Engen, J. Am. Chem. Soc., 1987, 109, 5035 Muehldorf et al., J. Am. Chem. Soc., 1988, 110, 6561

Electrostatic model for π - π interactions: Hunter and Sanders, *J. Am. Chem. Soc.*, **1990**, *112*, 5525

- aromatic rings have permanent quadrupole moment
- van der Waals interactions favor maximum coplanar overlap, but direct stacking results in electronic repulsion
- π -electrons in aromatic systems are delocalized, but electropositive nuclei (σ -framework) generate local electric field

π – π interactions: X-ray crystal structures

Tyrosine-guanosine stacking complex

Guanosine binding site of ribonuclease T_1 . Guanosine is shown in bold

Heinemann & Snenger, Nature, 299, 27 (-82)

Electron-donating substituents (-OR) Increase edge-to-face interactions!

Figure 1. (a) X-ray structure of 1 and (b) X-ray structure of the complex between 1 and 5.

Hamilton and van Engen, *JACS*, **1987**, *109*, 5035 Mueldorf et al, *JACS*, **1988**, *110*, 6561

face-to-face interaction:

edge-to-face interaction:

X= 0~~

Rules for predicting π - π interactions:

1) π - π orbital repulsion dominates in face-to-face stacking

 $(\pi - \pi$ stacking favored by e-deficient systems)

2) π - σ orbital attraction dominates in edge-to-face stacking

(i.e., donor-acceptor interactions)

3) π - σ orbital attraction results in an <u>offset</u> stacking

Electronic effects:

- \bullet π orbital electron density is affected as a function of the substituents, but effect is averaged and has no significant effect on orientation
- σ -framework is polarized by electronegative substituents, with substantial consequences for interacting π systems

Hunter–Sanders Rules for π – π interactions

Hunter and Sanders, JACS, 1990, 112, 5525

Figure 1. The four basic aromatic crystal packings. The short axes are indicated in each case.

Figure 9. Interaction between two idealized π -atoms as a function of orientation: two attractive geometries and the repulsive face-to-face geometry are illustrated.

Edge-to-face interactions in a quinone receptor: Hunter, *Chem. Commun.*, **1991**, 749

Molecular Recognition of Apolar Organic Molecules

Surface complementarity as a driving force in nonpolar solvents: Cram et al., *J. Am. Chem. Soc.* **1985**, 2574

calix[4]resorcinarene

Complexation is entropically driven, but stabilized by vdW forces

R R R	R-Si Si
HJGC	CH ₃ CH ₃

complexation with CS ₂ :	R	K _a (CDCl ₃ , 250 K)
	Me	0.82
\$ C	Et	8.1
j S	24	13.2

"cavitand"- cavity-bearing ligand

Encapsulation of Guest Molecules

<u>Encapsulation</u>: process by which guest cannot dissociate from host without major changes in conformation of bond restructuring (i.e., entry and exit cannot occur by simple diffusion)

1. "Carcerand" complex of Cs⁺ and DMF: Cram et al., *J. Am. Chem. Soc.* **1985**, 2575

2. "Cryptophane" inclusion complex with halogenated solvent molecules:

Canceill et al., *J. C. S. Chem. Commum.* **1985**, 361; Canceill et al., *J. Am. Chem. Soc.* **1986**, *108*, 4230; Canceill et al., *Angew. Chem.* **1989**, *28*, 1246.

Fig. 2. Free energy of formation (ΔG_i) at 300 K of a series of complexes of I as a function of the size (V_{vir}) of the guests.

Guest	ν [ų]	Δδ				ΔH _i [kcal mol ⁻¹]	ΔS_i [cal mol ⁻¹ K ⁻¹]
CH,I	54.5	3.70	13.6		-2.4		
CH ₂ Cl ₂	57.6	4.19	13.3		-2.8	+1.0	+6
CH ₂ Br ₂	65.5	4.18			-3.0		
CH,COCH,	70.0	3.44			-1.3		
CHCI ₃	72.2	4.44	13.3	14.4	-3.7	-6.0	-7
CHCl ₂ Br	76.1	4.42		14.9	-3.4	-5.2	-6
$CH(CH_3)_3$	79.4	∮4.25	. 13.9		-2.8	-3.8	-3
		2.95					
CHClBr ₂	80.1	4.41		14.8	-2.9	-1.5	+4
CHBr ₃	84.0	4.35		15.1	-2.3	-1.4	+4
CCI ₄	86.8				-1.2		
C(CH ₃)Cl ₃	89.2	3.55			-0.2		
$C(CH_3)_2CI_2$	91.6	3.45			+0.1		
C(CH ₃) ₃ Cl	93.9	3.18		17	+0.8		