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Preface

These notes provide a detailed treatment of the thermal energy storage
and transport by conduction in natural and fabricated structures. Ther-
mal energy by two main carriers—phonons and electrons—are explored from
basic principles. For solid-state transport, a common Landauer framework
is used for heat flow, and issues including the quantum of thermal conduc-
tance, ballistic interface resistance, and carrier scattering are elucidated.
Bulk material properties, such as thermal conductivity, are derived from
transport theories, and the effects of spatial confinement on these proper-
ties are established.

The foregoing topics themselves are not unique as elements in a book;
many other outstanding texts cover these topics admirably and are cited
in context herein. At the same time, the present content emphasizes a
basic theoretical framework based on the Landauer formalism that is as
self-consistent as possible, not only internally but also with respect to sim-
ilar efforts in this book series on the subject of electrical transport. The
other series titles, written by Profs. Supriyo Datta and Mark Lundstrom,
have therefore provided much inspiration to the present work, as have my
related conversations with these two amazing colleagues. The end result
is (hopefully) an accessible exposition on the foundations of the subject
that remains concise by avoiding lengthy digressions into the vast array
of related contemporary research topics. At the same time, it is my hope
that readers, after studying this work, will be ready to enter the field well-
equipped to contribute to this wonderful body of research and community
of researchers.

T. S. Fisher

vii



This page intentionally left blank




Acknowledgments

This text has been thoroughly inspired by the large number of outstanding
students whom I have been privileged to teach both in the classroom and
laboratory during my career. The content of this text has been refined over
the years through teaching students at Vanderbilt University, Purdue Uni-
versity, and the Jawaharlal Nehru Centre for Advanced Scientific Research
(Bangalore, India), as well as those from around the world who participated
in the first offering of an online course by the same name, first delivered
through the nanoHUB-U initiative in Spring 2013. I convey particular
gratitude to students Alfredo Tuesta, Anurag Kumar, Guoping Xiong, Jeff
Engerer, Kim Saviers, Menglong Hao, and Stephen Hodson for assistance
with proofreading and indexing. The nanoHUB-U team, and particularly
Amanda Buckles, Joe Cychosz, Erich Huebner, and Mike McLennan, pro-
vided tremendous support in launching the class and allowing me to fo-
cus on content, most of which appears herein. I also express appreciation
to members of Purdue’s Mechanical Engineering Heat Transfer faculty, a
group with whom I am humbly privileged to serve; and particularly in the
context of this book, I express gratitude to Professors Jayathi Murthy (now
at UT-Austin), Xiulin Ruan, and Xianfan Xu, each of whom has inspired
substantial content herein. Other Purdue faculty colleagues whose influ-
ence has significantly shaped my interpretation of the subject matter in-
clude Supriyo Datta, Bob Lucht, Mark Lundstrom, Ron Reifenberger, Tim
Sands, and Ali Shakouri. The content herein draws from many sponsored
research projects in which I have participated over the years, and I con-
vey my sincere appreciation to those sponsors. In terms of active research
projects during the writing of the book, the most relevant is that from the
US Office of Naval Research (Program Manager: Dr. Mark Spector) on
interfacial heat transfer. I also thank the publisher, World Scientific, and

ix



X Thermal Energy at the Nanoscale

particularly Song Yu for supporting this book series and assisting with the
publication details.

Lastly, I offer my most sincere thanks and recognition to Sridhar Sada-
sivam and Ishan Srivastava, two doctoral graduate students in my group at
Purdue. Sridhar has served impeccably as a sounding board for the expla-
nations and content in the text, as well as providing great help in compos-
ing and organizing graded content for the companion online course offered
through nanoHUB-U. Ishan has patiently tolerated my pedestrian capabil-
ities in graphic arts and created most of the graphics contained herein. He
has also developed a suite of simple, web-accessible simulation tools (using
Wolfram’s CDF driver) for use in the online course that draws from the
content here. Aside from the foregoing specific contributions, our regu-
lar meetings to discuss ideas, explanations, theory, and content for these
notes and the online course have been tremendously invigorating. In these
days of much chaos for academic researchers, with the various and sundry
demands of our profession, finding time to focus on what really matters
with these two gifted colleagues has been delightful; I thank them for their
engagement.

@

OW



Contents

Preface vii
Acknowledgments ix
Nomenclature XV
List of Figures xix
List of Tables XXV
1. Lattice Structure, Phonons, and Electrons 1
1.1  Imtroduction. . . . . . .. .. ... .. ... ... .. 1

1.2 Atom-to-atom Bonding in Solid Lattices . . . . . . .. .. 3

1.3  Mathematical Description of the Lattice . . . . .. .. .. 9

1.4  Lattice Vibrations and Phonons . . . . . . .. ... .. .. 13

1.5 FreeElectrons. . . . . . ... .. ... . 18

1.6  Example: 1D Atomic Chain with a Diatomic Basis . . . . 22

1.7 Conclusion . . . ... .. ... .. 27
Example Problems . . . . . .. ... o 30
Graphene reciprocal lattice . . . . .. .. ... .. .... 30
Dispersion relation for a 1D chain . . . . ... ... ... 32

Kinetic energy of the free electron gas . . . . .. ... .. 33

Phonon bandgap in a diatomic chain . . . . . . .. .. .. 34

2. Carrier Statistics 37
2.1  Imtroduction. . . . . ... .. .. ... 37

2.2 Statistical Ensembles . . . . . ... ... 000 37

2.3  Phonon Density of States . . . . . ... ... ... .... 42

xi



xii

24
2.5

Thermal Energy at the Nanoscale

Electron Density of States . . . . . ... ... ... ....
Example: Derivation of Planck’s Law . . . . . . .. .. ..
2.5.1 Photon GasinaBox . ...............
2.5.2  Statistical Mechanics of the Photon Gas . . . . .
2.5.3  Energy Density of the Photon Gas . . . . . .. ..
2.5.4  Blackbody Emission Intensity . .. ... ... ..

Example Problems . . . . . . .. . ... 0000

Getting a feel for the numbers. . . . . . . ... ... ...
Working with the Bose-Einstein distribution function . . .
Phonon DOS in graphene . . . . . ... ... ... ....
Phonon frequency at maximum intensity . . . . . . .. ..

Basic Thermal Properties

3.1
3.2

3.3

Introduction . . . . . . .. ...
Specific Heat . . . . ... .. ... .. .. .........
3.2.1  Acoustic Phonon Specific Heat . . . . . . ... ..
3.2.2  Optical Phonon Specific Heat . . ... ... ...
3.2.3 Electron Specific Heat . . . . . . . ... ... ...
3.2.4  Specific Heat for Low-Dimensional Structures

Thermal Conductivity from Kinetic Theory . . . . .. ..

Example Problems . . . . . . .. .. .. o000

Graphene ZA branch specific heat . . . . ... ... ...
Specific heat of metals . . . . .. ... ... .. ......
Thermal conductivity from kinetic theory . . . .. .. ..
Specific heat of a diatomic chain . . . .. ... ... ...

Landauer Transport Formalism

4.1
4.2
4.3
4.4
4.5

Basic Theory . . . . . .. .. .. .. .. ... ... ...
Number of Modes . . . . . . . ... ... ... ... ....
Thermal Conductance . . . . . ... ... ... ......
Spectral Conductance . . . . . . ... ... ... .. ..
Example: The Quantum of Thermal Conductance

Example Problems . . . . . . .. .. ... ... .. ..

Application of the Landauer formula . . . ... ... ...
Number of modes . . . . . . ... ... ... ... ... .
Quantum of thermal conductance . . . . . ... ... ...
Spectral thermal conductance . . . . . .. ... ... ...

61

61
62
63
68
70
72
74
7
7
79
81
83



Co

ntents

5. Carrier Scattering and Transmission

5.1  Scattering Analysis in the Landauer Formalism . . . . . .
5.2 Thermal Conductivity Revisited . . . .. ... ... ...
5.3  Boundary and Defect Scattering . . . .. ... ... ...

5.3.1 Boundaries . .
5.3.2  Defects . . . .
5.4  Phonon-Phonon Scatter

ing Fundamentals . . . .. .. ..

5.5  The Effective Scattering Rate . . . . . .. ... ... ...

5.6 Interfacial Transmission

5.6.1 Acoustic Mismatch . . .. ... ... ... ....
5.6.2 Diffuse Mismatch . . . .. ... ... ... ....
5.7  Thermionic Electron Emission . . . . . .. ... ... ...

5.8 Conclusion . ... ..
Example Problems . . . . . .

Thermal conductivity of silicon . . . . .. ... . ... ..

Thermal interface resist
Thermionic emission .

ance . . ... ..o o s e

Thermal conductivity of confined nanostructures . . . . .

Appendix A The Graphene ZA Branch

A.1 Introduction. . .. ..

A.2  Geometry and Governing Equation . . . . . . .. ... ..

A.3  Solution and Dispersion
Appendix B Electron and Phono

Conduction in Graphene

B.1  Introduction . . . ..

B.2 Mode Densities . . . .

B.3  Thermal Conductivity
Bibliography

Index

n Contributions to Heat

xiii

113

113
114
116
117
119
122
126
129
130
136
138
146
148
148
149
152
154

157

157
157
159

161

161
161
163

165
169



This page intentionally left blank




EDYET NDOYI LT OSS < @2
QO

Nomenclature

thermal diffusivity (length?/time)

inverse of thermal energy, (kgT)~! (1/energy)
carrier energy scaled by kT (-)

unit cells per volume of real space (1/volume)
volumetric electron density (1/volume)

quantum of thermal conductance (energy/time/temperature)
thermal conductivity (power x length/(‘area’ X temperature))
particle mean free path (length)

plate bending stiffness (force x distance = energy)
plate loading (force/area)

boundary scattering length scale (length)

carrier transmission function (-)

mass density of a continuum string (mass/length)
Poisson ratio (-)

number of possible states of a statistical ensemble (-)
frequency (radians/time)

Debye frequency (radians/time)

Einstein frequency (radians/time)

emitter work function (energy)

mass density (mass/volume)

scattering cross section (area)

electrical conductivity (current/(length x voltage))
scattering time (time)

scattering rate (1/time)

boundary scattering rate (1/time)

Debye temperature (temperature)

Einstein temperature (temperature)
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Fermi temperature (temperature)

scaled spectral thermal conductance (-)

boson energy (energy)

real-space lattice translational vectors (length)

reciprocal lattice translation vectors (lattice)

reciprocal lattice vector (1/length)

real-space lattice vector (length)

group velocity (length/time)

lattice constant (length)

phase velocity (length/time)

speed of light in vacuum, 2.99792458 x 10% m/s

volumetric specific heat (energy/(volume x temperature))

density of boson states, frequency basis (time/volume)

density of boson states, energy basis (volume energy) !

density of fermion states, energy basis (volume energy)~!

density of boson states, k-space basis (length/volume)

dynamical matrix (force/(length x mass))

energy (energy)

bond energy (energy)

Fermi energy (energy)

Young’s modulus (force/area)

vacuum energy level (energy)

boundary scattering fitting factor (-)

force on an atom due to bond stretching (force)

equilibrium carrier distribution function (-)

forward-wave string displacement (length)

spring constant of an interatomic bond (force/length)

spectral thermal conductance (power/temperature, per unit
frequency for phonons, or per unit energy for electrons)

reflected-wave string displacement (length)

thermal conductance (power/temperature)

plate thickness (length)

electrical current density (current/‘area’)

heat flux (power/‘area’)

phonon wavevector (1/length)

electron wavevector (1/length)

Debye wavevector (1/length)

Fermi wavevector (1/length)
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Nomenclature xvii

Lorenz number, dimensionless constant X (’%3) ’

atomic mass (mass)

number of phonon modes (-)

number of electron modes (-)

electron mass, 9.10938188 x 1073! kg

phonon mode density, d = system dimension (1/‘area’)

electron mode density, d = system dimension (1/‘area’)

number of atoms (-)

electron number (-)

Avogadro’s number, 6.0221415 x 10 (-)

defect density of impurity scatterers (1/volume)

number of allowed phonon states, d = system dimension (-)

number of allowed electron states (-)

number of phonons with wave vector K (-)

acoustic wave power (energy/time)

probability of a statistical state (-)

elementary electron charge, 1.602 x 10719 C

distance coordinate (length)

thermal boundary (interface) resistance (temperature/power)

area-normalized thermal boundary (interface) resistance
(areaxtemperature/power)

entropy (power/temperature)

interfacial energy transmittance from medium 1
to medium 2 (-)

internal energy (energy)

potential energy (energy)

atomic displacement away from equilibrium (length)

specific internal energy (energy/volume)

spectral energy density (energy/volume, per unit x, where z
is a spectral quantity such as frequency or wavelength)

acoustic wave velocity (length/time)

Fermi velocity (length/time)

total string displacement (length)

acoustic impedance of a string under tension (mass/time)
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Chapter 1

Lattice Structure, Phonons,
and Electrons

1.1 Introduction

Guessing the technical background of students in a course or readers of a
book is always a hazardous enterprise for an instructor, yet one must start a
book or a course somewhere on the landscape of knowledge. Here, we begin
with some essential concepts from condensed-matter physics and statistical
mechanics. The definition of essential, too, is questionable and is presently
intended to be information that recurs too frequently in the later parts of
the text to leave the requisite information to the many excellent reference
sources on these subjects.

Our overarching objective is to develop the tools required to predict
thermal transport in structures such as the one shown in Fig. 1.1. Arguably
the most important thermal characteristic of an object is its thermal con-
ductivity (k) defined as:

[rate of heat flow (in W)] X [object length (in m)]

. 1.1
[cross-sectional area (in m?)] x [temperature drop (in K)] (L.1)

K

For roughly a century, thermal conductivity was considered a basic mate-
rial property in the engineering sense (e.g., with minor accommodation for
variations in temperature), and therefore, the effects of the geometric terms
in Eq. (1.1) were assumed to normalize with the others such that the final
property was independent of size and shape. However, with the advent of
microscale fabrication (and later nanoscale fabrication), the technical com-
munity was able to create tiny materials that exhibited deviations from the
size-independent property assumption. In such circumstances, knowledge
of not only a material’s size and shape becomes crucial but also the de-
tails of the atomic-scale carriers of thermal energy (Chen, 2005). At this
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level, in order to retain the utility of the concept of thermal conductivity
(and it does remain useful for many purposes) we need to understand many
additional factors, including:

e What type of quantum-mechanical carrier dominates heat flow in
the material?

How is thermal energy distributed among these carriers?

How fast do the carriers move through the material?

How much thermal energy does each carrier hold as it moves?
How do the carriers scatter as they move through the material?
How do the boundaries and interfaces impede carriers?

The answers to these questions require a much deeper perspective on
the mechanisms of thermal energy transport than is provided in traditional
engineering expositions on heat conduction. Thus we embark here on the
first of two background chapters: the present on lattice structure and the
subsequent on statistics of energy carriers.

IR Vellay CONtact area

THERMAL ENERGY AT THE NANOSCALI

Fig. 1.1 Schematic of a general contact-device-contact arrangement.

The study of thermal energy in any material should rightly begin with
a description of the material itself, for thermal energy, unlike other forms
of energy such as optical, electronic, and magnetic, is routinely generated,
stored, and transported by a diverse set of ‘carriers’. The reason for broader
context of thermal energy derives from the second law of thermodynamics,
which dictates that all forms of energy tend toward disorder (or ‘thermal-
ization’). In this text, we will make every reasonable attempt to unify the
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analysis, i.e., to generalize concepts so that they apply to multiple carriers,
but this objective is occasionally elusive. In such cases, the text will make
clear the relevant restrictions by carrier and material types. The list of in-
teresting materials and physical structures is almost endless, and therefore
given the subject of ‘nanoscale’ physics, the text begins with an admittedly
cursory treatment of interatomic bonding but then highlights where possi-
ble a compelling structure — the graphene carbon lattice — to illustrate
important and unique thermal behavior at the nanoscale.

1.2 Atom-to-Atom Bonding in Solid Lattices

The details of interatomic bonding determine a broad assortment of physi-
cal material properties, ranging from mechanical strength to electrical con-
ductivity. The primary interest here relates to the resultant vibrational
characteristics of atoms that exist in an ordered arrangement, i.e., in a reg-
ular crystal. However, we start with a simpler situation: that of a diatomic
molecule.

Figure 1.2 shows a schematic of two atoms separated by an equilibrium
distance r = ry about which the atoms vibrate at various (but restricted)
frequencies. A generic potential energy field U(r) between the atoms is
shown in the bottom half of the figure, revealing the strong repulsive force
(F = —0U/0r) when the atoms are close together (r < 7). The minimum
energy (at 7 = rg) corresponds to the bond energy, as the potential energy
asymptotes to zero when the atoms are pulled apart (r — o).

The mathematical form of the potential can be very complicated and
is itself the subject of intensive research through both first-principles
(ab initio) approaches such as density functional theory (Saha et al., 2008)
and empirically derived potentials (Tersoff, 1988). For the time being, we
consider a simplification of the potential, focusing on the near-minimum
region where the potential is typically well approximated by a parabolic
relation with respect to the equilibrium displacement u = r — ro such that
U ~ u?. The constant of proportionality plays an important role in the dy-
namics of molecules and lattices, for it contains the effective spring constant
g of the bond:

1
U= §gu2. (1.2)

This so-called harmonic approximation is depicted in Fig. 1.3. We note
that lattice vibrations typically involve small displacements; therefore, the
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Fig. 1.2 Variation of potential energy field U(r) with interatomic distance r. r = rg
corresponds to the equilibrium separation with minimum potential energy.

harmonic approximation tends to predict the overall vibrational states (or

@

what we will call the wvibrational eigenspectrum) with good accuracy. The

http

OW

deviations, or anharmonicities, however, play an important role in phonon
scattering, as discussed in Chapter 5.

One issue that we will cover only briefly is how such bonds form. Refer-
ring to Fig. 1.4, when two self-contained atoms [Fig. 1.4(a)] are brought to-
gether [Fig. 1.4(b)], their electrons can interact and begin to share orbitals.
However, the energies of the orbitals must change because of restrictions
imposed by the Pauli exclusion principle on the quantum states of electrons;
therefore, upon bonding, the energy levels depicted by horizontal lines in
Fig. 1.4, undergo small shifts.

These electronic interactions define the nature and strength of inter-
atomic bonds and can produce many different bond types and energies
(Ep), including;:

e van der Waals: weak bond due to dipole moments, E; ~ 0.01 eV
e Hydrogen: due to electronegative atoms (e.g., O in HpO), E, ~
0.1 eV
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Harmonic

<

7 Anharmonicity

r

Fig. 1.3 Harmonic approximation to the real interatomic potential with anharmonicity.
At small displacements, the harmonic potential is a good approximation.

e Covalent: atoms share valence electrons (e.g., Si and diamond),
Ey=1~10eV

e Jonic: one atom gives up its electron, forms ions with Coulombic
binding forces, £, =1 ~ 10 eV

e Metallic: like covalent bonds, but with freely moving electrons,
Ey=1~10eV

We will focus on thermal energy in solid materials, but some of the con-
tent such as kinetic theory in Chapter 3 applies equally well to fluid phases.
Within the array of solid-state materials, single-crystal structures are the
most amenable for initial study, although even these structures become
rather complex in three dimensions with various atomic arrangements such
as face-centered cubic (fce), body-centered cubic (bee), and diamond config-
urations that are perhaps most familiar to readers. To minimize digression,
here we refer the reader to the many excellent textbooks on solid-state
physics (Ashcroft and Mermin, 1976; Kittel, 2007) and crystallography
(De Graef and McHenry, 2012) for advanced treatment of 3D crystals.

We will focus on one- and two-dimensional lattices for the sake of
expediency and because the 2D graphene lattice has high contemporary
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Fig. 1.4 (a) Two isolated, self-contained atoms and associated electron energy states.
(b) Quantized energy states upon bond formation between the two isolated atoms. En-
ergy levels are modified as electron orbitals become shared in a bond.

scientific and technological importance. A simple 1D structure is obtained
by repeating the diatomic arrangement of Fig. 1.2 indefinitely. Figure 1.5
shows the resulting configuration, with each atom of mass m connected to
its neighbor by a bond with spring constant g. The equilibrium separation
between atoms is represented by the lattice constant a. Somewhat sur-
prisingly, this simple, idealized structure will enable us to develop almost
all the essential tools for analysis of lattice vibrations and their quantum
manifestation—called phonons.

Because an ideal crystal extends infinitely in all directions, we must find
a way to concentrate the analysis on a smaller region. Fortunately, the regu-
lar order, or periodicity, of a crystal lattice makes this task straightforward.
A primitive unit cell of a lattice is one that, if repeated throughout all space
by well-defined translational vectors, would fill the space entirely and with
no overlapping regions or void spaces. Figure 1.6 shows an example for a
2D monatomic rectangular lattice. Several possible shapes, positions, and
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spring constant, g atom mass
- >

lattice constant, a

Fig. 1.5 An ideal 1D crystal modeled as periodic atom-spring-atom system.

orientations of the primitive unit cell exist for this lattice, as indicated by
the shaded regions. The arrows denote basis vectors (d@;) that define the
periodic translation of the unit cells throughout the domain. The set of all
possible translations by integer indexing of basis vectors forms a so-called
Bravais lattice, whose discrete points are given by the lattice vector R:

=g _, in 2D N N
R= E n;a; = MNi1a1 + Noaa. (13)
[

For the linear 1D chain, the sole lattice vector is simply the lattice
constant a.

Fig. 1.6 An ideal 2D monatomic rectangular lattice represented by periodic translation
of valid primitive cells (shaded green) defined by green basis vectors.

As might be expected given the complexity of our natural world, a
Bravais lattice alone cannot describe the atomic positions of all real crys-
tals. For such cases, we resort to defining the positions of multiple atoms
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(usually two) at each nodal site in the Bravais lattice. This approach is
quite understandable for compounds such as crystalline SiO9 (quartz), but
it is also necessary to describe the lattice geometry of some monatomic crys-
tals, including technologically important ones such as silicon and diamond.
Figure 1.7 shows the crystal construction in 2D, with the multi-atom basis
pair placed regularly on spatially distributed Bravais lattice points.

s o o & o. o. o.
s s o —4 ° p— °. 0. °.
3K 2K 4

Crygtal Basla Crystal
Lattice Structure

Fig. 1.7 Structure of a two-atom basis crystal. Each nodal site of the lattice contains a
two-atom basis that defines the complete crystal structure upon translation through all
possible lattice vectors.

One of the most fascinating 2D lattices, and one of intense contemporary
study, is graphene, which consists entirely of carbon atoms in hexagonal
arrangement on a 2D plane as shown in Fig. 1.8. The equilibrium distance
between nearest carbon atoms is @ = 1.42 A, where the ‘™’ denotes a bond
length (often the lattice constant and bond lengths differ for more complex
lattices). Different edge configurations are possible in graphene, and the
two most common are shown in the figure. Importantly, graphene is one
of the monatomic structures that requires the addition of a basis atom to
describe the full lattice. Its basis vectors, as shown in Fig. 1.9, are:

L 3. VB
a1:§ax+7ay
(1.4)
i = Sa - Lo
2=35 5 Y

The vector that connects the primary and basis atoms within a unit cell is
simply a, = az.
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Fig. 1.8 Graphene nanoribbon crystal structure. The left structure is the armchair
configuration; the right structure is zigzag. Dashed rectangles represent a graphene
nanoribbon unit cell. The unit cell for each configuration is displayed below the crystal
lattice structure.

1.3 Mathematical Description of the Lattice

The analysis of crystals can seem challenging in comparison to that of
individual molecules because of the former’s vast size. To overcome this
challenge, we take advantage of a crystal lattice’s translational symmetry.
This approach requires a mathematical description that inverts space such
that large entities become small.

We describe something large in terms of small things in the common
way—with Fourier transforms. We start again with 1D chain of atoms and
allow for the possibility that these atoms have a distributed mass den-
sity p. Perfect periodicity with lattice constant a (see Fig. 1.10) implies
that:

p(z +ma) = p(), (1.5)

where m is any integer.



10 Thermal Energy at the Nanoscale

Translation vectors:

d,=4ax+%ay

ax—

ay

w

R

4

a, =3

-

E

Fig. 1.9 Basis vectors for the graphene crystal structure.

Fig. 1.10 Perfect periodic 1D chain of atoms with lattice constant a.

Each density function p(x) and p(z +ma) can be expanded in a Fourier
series such that Eq. (1.5) becomes:

plx) = ppexp{iGna}
= p(x +ma) = Z pn exp {iGp(z + ma)}

= Z pn exp {iGpz}exp {iG,ma}, (1.6)
— exp {iG,ma} = 1 — G,ma = 27 X integer, (1.7)

where n and m are indexing integers. The last relation, Eq. (1.7), severely
restricts the possible values of G. This restriction should not be surprising
because the original density function, p, is strictly periodic and in the limit
of point masses represents a series of delta functions. In fact, the series of
real-space lattice points at a, 2a, 3a, . . . for this simple 1D problem is simply
the Bravais lattice vector defined by R = nag.
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Extending to multiple dimensions, the restrictive relation between G
and R is:

Gy - Ry = 27 x integer. (1.8)

The vector G thus becomes critically important in the description of
lattices—the reciprocal lattice vector. In the interest of brevity and follow-
ing the lead of Ziman, we will not be “concerned here with mathemati-
cally pathological functions, and may use naive Fourier theory quite freely”
(Ziman, 1972). As such, we will simply state the relations between recip-
rocal lattice translation vectors 51 and the direct lattice translation vectors
a; in 3D:

é = klgl + kggg + k353, (1.9)
where
by = 2m -2 X 0k (1.10)

ay - (62 X dg),

and k; are integers, and the denominator in Eq. (1.10) is the unit cell
volume.

Once the El vectors are known, the reciprocal space can be populated
with discrete points. We will focus on 2D graphene here. Analysis of the
primitive translational vectors in Eq. (1.4) in the context of Eq. (1.8) reveals
that we must have 51 1 dy and 52 1 dq and that

= V3. 3.
b1 = Cl 71‘ + §y
by = Cy ?w - gy] . (1.11)

The constants C; and Cy must be equal to preserve the generality of
Eq. (1.8), and given the magnitude of the vectors |@;| = v/3a, we find:

4
C = C =
! 2 a3v3
g 271' 1A + 1 R
— = — | =X e
- 27 |1, 1 -
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The resulting lattices, both direct (a) and reciprocal (b), for graphene
are shown in Fig. 1.11, as well as the respective translational vectors and
the so-called 1st Brillouin zone, which is hexagonal in shape. The reciprocal
lattice’s primitive cell (i.e., 1st Brillouin zone) is established by connecting
lattice points with lines, which then define the shaded region of 2D space
closest to a given lattice point.

Real space Reciprocal space

Primitive cell
15t Brillouin zone

=

(a) (b)

Fig. 1.11 (a) Direct graphene lattice. (b) Reciprocal graphene lattice. The primitive
cell of the reciprocal lattice is the 1st Brillouin zone. Translation vectors of both lattices
are also depicted.

Reciprocal space is often termed ‘k-space’, and we will use the terms
interchangeably. Reciprocal space is also useful in defining directions in a
crystal. For a given real-space lattice plane, the Miller indices (k1koks) are
vector coordinates (see Eq. (1.12)) of the shortest reciprocal lattice vector
normal to the plane. The Miller indices should not be confused with the
primary directions in the real-space lattice, which are denoted by square
brackets [xyz].
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1.4 Lattice Vibrations and Phonons

The description of lattice vibrations starts with the potential-
energy/displacement relation of Eq. (1.2). When constructed as a linear
chain of atoms, the individual potential energies from each compressed or
expanded spring are summed to form the harmonic potential energy U"™:

grharm _ %g " {ulna] — ul(n + 1)a)}?, (1.13)

where the terms na and (n+1)a designate the spatial positions of the atoms.
The force on an individual atom (at, say, location na) can be calculated
from the spatial derivative of displacement at that location:

2u na harm
F= md d§2 ) = _gg(na) = —g{2u(na) —u[(n — 1)a] —u[(n+ 1)a]},
(1.14)

where the factor 2 appearing in 2u(na) is the result of the fact that loca-
tion ‘na’ appears twice in the summation of Eq. (1.13) (once as (n + 1)a
and then as na as the sum proceeds). The ‘na’ nomenclature becomes
quite tedious in practice, and we therefore simplify the expression of
Eq. (1.14) as:

u,,
M= = —g{2Up — Up—1 — Unt1}. (1.15)
The solution of Eq. (1.15) requires boundary conditions, and the sim-
plest are the so-called Born-von Karman type in which the ends of the 1D
chain are attached as in a loop (see Fig. 1.12). We note that this ‘loop’
does not add a new dimension to the problem, as the number of atoms N
is assumed to be very large.
The Born-von Karman boundary conditions become:

u = U
N (1.16)
UN41 = U7.

We assume a plane-wave solution for displacement at location n as:

U (t) ~ exp {i (Kna — wt)}, (1.17)
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n@ ®
© <

o ©
3

O ® O

N - 2

Fig. 1.12 1D chain of N atoms with the Born-von Karman boundary condition.

where K is the wavevector of the plane wave and is proportional to the
inverse of wavelength. Application of Eq. (1.17) to the boundary conditions
above yields:

unt1 ~exp{i[K (N +1)a—wt]}
uy ~exp{i[Ka— wt]}

— 1=exp[iKNa] —» KNa = 2mn, (1.18)

where n is an indexing integer. The final relation in Eq. (1.18) is of crucial
importance, for it restricts the possible values of the wavevector K that
can ‘fit’ on the looped 1D chain. Of course, if the number of total atoms
N is large, then many wavevectors are possible. Defining the wavelength
as A, = alN/n, the set of allowed wavevectors becomes:

_ 2mn 2m
= WN

Finally, we note that the minimum size of a wave (wavelength) is
Amin = 2a, for any shorter waves would not have atoms to sustain them.
Another way of explaining this characteristic is that any smaller wave-
lengths would have nodal positions (in the standing wave sense) that could

K, (1.19)
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be described by longer waves in which the nodal positions would exist on
lattice sites, instead of between atoms. Consequently, the maximum unique
wavevector is:

™

|Kmax,unique| = E (120)

This important restriction enables us to convert what is an infinite domain
in real space (as N — o0) into a finite domain in reciprocal space (K €
[-7/a,/a]), with the associated advantages of mathematical convenience.
Importantly, this unique region of reciprocal space (or k-space) coincides
with the 1st Brillouin zone.

We now return to the equation of motion, Eq. (1.15), and its solution.
Substitution of the plane-wave function of Eq. (1.17) for position na and
incorporation of the discrete wavevectors K; produces:

_ mwjzez(Kinafwjt) =—g [2 _ efsza _ esza] ez(anafwjt)

= —2g(1 — cos K;a) e'Kina=wit), (1.21)

The resulting relationship between frequency and wavevector defines the
dispersion relation of the lattice:

wi(K;) =1/ W = 2\/%’5‘111(%[(]@)’ . (1.22)

The continuous form of this relation (w(K), which we will use hereafter,
dropping the subscript j) is sketched in Fig. 1.13. We note that the max-
imum frequency depends quite simply on the spring constant and atomic
mass, as Wmax = 21/g/m.

The dispersion relation contains information pertinent to a wide range
of material characteristics, from elastic constants to the scattering rates of
phonons. We will discuss many of these in context throughout the remain-
der of the text. For now, we highlight the phase and group velocities:

phase velocity: ¢ = %, (1.23)

ow

group velocity: vy = K (1.24)
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Fig. 1.13 Dispersion relation for a monatomic 1D chain of atoms.

Most of our interest will be given to the group velocity because it de-
termines the rate of energy transport. Further, we will often focus on the
long-wave limit (K — 0), for which:

limw:a,/£|K|
K—0 m

- —a L Y=
—>Il<11n0vg—a m_‘K‘ c. (1.25)

In this limit, the group and phase velocities are equal, and they both are the
same as the speed of sound in the solid. Therefore, the types of phonons
that exhibit this behavior (other types are considered later) are termed
acoustic phonons.

Thus far we have used strictly classical descriptions of mechanical vibra-
tions to derive the vibrational spectrum of the lattice. However, to treat
collections of vibrations (because a lattice can support many vibrational
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modes at the same time), we must transition to a quantum description.
Nevertheless, we can retain the results from the classical harmonic oscil-
lator solution above to define each normal mode in terms of a wavevector
K and frequency w (i.e., the dispersion relation remains valid). A solution
of the time-independent Schrédinger equation of quantum mechanics (see
Eq. (1.31) in the next section) reveals that each mode can contain a set of
energies described by:

EK = (NK-F%) hwie, (1.26)

where N represents the number of phonons with wavevector K, and the
terminology wy is intended to signify the inherent relationship between fre-
quency and wavevector embodied by the dispersion relation (Eq. (1.22)).
The % term in Eq. (1.26) accounts for the so-called zero-point energy whose
derivation is available elsewhere (Ashcroft and Mermin, 1976, Appendix L).
The term Ny defines the average number of such excited modes of
wavevector K, or the number of phonons, and is defined by Bose-Einstein
statistics:

1

NK = [ 17
exp k5T

(1.27)

where kp is Boltzmann’s constant, and 7" is temperature. We will later use
the symbol f§ as a synonym for Ng (in attempt to maintain some consis-
tency while also identifying various symbols that are used in the literature
for the occupation number).

The connection between the quantum energy of Eq. (1.26) and the clas-
sical vibration amplitude is often elusive to new learners and is therefore
included here to connect with mechanical intuition. Classically, each vi-
brational mode contains a combination of potential and kinetic energy that
can be shown to be, on average, equal in magnitude by the virial theorem
(Ashcroft and Mermin, 1976) such that:

Eclassical = Z m |U|2 y (128)

lattice

where the“ ” denotes time differentiation. For a simple lattice of N atoms
with one atom of mass m per unit cell, the summation can be transformed
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to reciprocal space as:

Eclassical = Z wa%{ |ﬂK|2 3 (129)
K

where |tg| is the amplitude of atomic displacement for a mode with
wavevector K. Equating the summed term in Eq. (1.29) with the quantum
version (Eq. (1.26)), the relationship between displacement amplitude and
(quantized) energy becomes:

€K
2
Nmw3,

lix|”

1
_ Wx+3)h (1.30)
Nmwg

This result should be intuitive, for it indicates that displacement amplitude
increases with increasing occupation number and decreases with increasing
frequency, both in the square-root sense. An illustration of phonon quanti-
zation, showing the relationship between allowed energies and atomic dis-
placements, is shown in Fig. 1.14. For further details, the reader is referred

to Ziman (1972).

Still remaining in our development is the extension of the foregoing
principles of dispersion and energy to multiple dimensions and orientations
of oscillations relative to the propagation direction (i.e., polarization). We
defer these subjects to later chapters, when they can be developed in better
context.

1.5 Free Electrons

Electronic behavior varies widely among different types of materials, from
‘free’ conduction in metals to virtually none in insulators. In this chap-
ter we will consider only metals, and even then we will use the simplest
approximation—free electron theory. Later chapters elucidate more compli-
cated electronic structure.

The fundamental equation governing quantum particles is Schrédinger’s
equation, whose time-independent form is:

" V2U(7) + V(AT = BU(7), (1.31)

2m
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Fig. 1.14 Discrete energy levels depict phonon quantization. Successive energy levels
are separated by fiw.

where U is the electron wavefunction, and V() represents a potential energy
function that commonly represents the periodic ion field in a crystal. How-
ever, V(7) = 0 is assumed to make electrons ‘free’ in the present simplifi-
cation. The wavefunction determines the probability per unit volume P of
finding an electron at position 7" according to:

P = |U()?| = U(F)U*(F), (1.32)

where the “*” denotes complex conjugation. Once again, we assume a
plane-wave solution (in this case, a steady-state form):

1 =
Uy (F) = —=e™*T, (1.33)

where V is volume and k is the electron’s wavevector.! Substitution into
the governing equation yields an expression for the energy eigenvalue Fj:

h2k?

B, =
k 2mea

(1.34)

1We will use the lowercase symbol k for electrons, and the uppercase K for phonons to
signify the carrier type. The term k-space is generic and applies to either.
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where k = ‘E‘ Equation (1.34) relates electron energy and wavevector
and is the dispersion relation for electrons, analogous to Eq. (1.22) for
phonons. In this case, the functional relationship is parabolic, Ey ~ k2.
Such parabolic dispersion relations (or bands) are common in real materials,
even for those with complicated electronic structures.

The parabolic ‘E —k’ relation suggests a connection between wavevector
and momentum. The usual Newtonian expressions for momentum p and

e’ 2F
|p|:me|v|;E:mv — = il
2 \/me
2F
H|p|=me\/m:=\/M:\/W:hk (1.35)

Hﬁ:h/;

energy become:

The final result indicates that the wavevector can be considered a surrogate
for momentum.

The momentum of electrons is restricted to certain allowed states, as it
was for phonons. For the free electron gas, we can determine these values by
considering an electron in a cube (the so-called ‘electron in a box’ problem).
The wavefunction and its corresponding probability functional in Eq. (1.32)
are assumed to be spatially periodic (see Fig. 1.15), such that:

U(r+L)=¥(z); Y(y+L)=Y(y); V(z+L)="(2). (1.36)

Combining these periodic conditions with the plane-wave solution of
Eq. 1.33 produces a set of allowable wavevectors:

kel — gikyL _ gik:L _ q
1 27N, 1 2mny, 2mn, 1.2.3 (1.37)
— Rg = ’ = y Rz = g = 1,24,0,...
L Y L L

This result should be familiar, for it is the same as that for phonons in the
linear chain (Eq. (1.19)) for L = aN, the chain length. Therefore, allowable
wavevectors are separated by 27/L in reciprocal space; this characteristic
will be useful in the next chapter in deriving the so-called density of states.

An important difference exists, however, between the manner in which
the allowed wavevectors are populated for electrons and phonons. The lat-
ter can populate a state with a limitless number whose average (which need
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X

Fig. 1.15 Electron in a cube with a spatially periodic wavefunction.

not be an integer) is given by Eq. (1.27). Conversely, the electron occupa-
tion number of a given state is limited by the Pauli exclusion principle to
be either 0 (not occupied) or 1 (occupied). Therefore, free electrons readily
fill the reciprocal space until the number of carriers is exhausted.

Consider a material that contains N’ free electrons in a volume of real
space V. The ratio of these is the electron density n. = N'/V. Be-
cause each allowed state occupies a reciprocal-space volume of (27/L)3, the
number of electrons can be expressed in terms of a spherical ‘volume’ of
k-space as:

2(47rk3/3) - ﬁ

(27T/L>3 Bz

where kr is called the Fermi wavevector and represents the largest occupied
state at absolute zero temperature (the next chapter considers non-zero
temperatures). The factor 2 in Eq. (1.38) accounts for the two electron
spin states—up and down.

N' = (1.38)

Other Fermi quantities can be easily derived from the Fermi wavevector:

) (1.39)

h2k:%J _ K2
2m.  2me.

Fermi wavevector: kp = (37,

(3n%n0)*° (1.40)

Fermi energy: Er =
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hk R
Fermi velocity: vp = —— = —(37r2775)1/37 (1.41)
Me  Me
E 12
Fermi temperature: p = —— = (37r277€)2/3 : (1.42)

kB o 2mekB

The Fermi energy Ep is the most commonly used, and as shown in
Eq. (1.40), can be calculated from the electron density. The Fermi ve-
locity vp is also an important quantity because even though the electron
velocities cover a very broad range, only states near the Fermi level are
active in conduction because of the nearby availability of unoccupied states
necessary to produce transport.

A sketch of the filled and empty energy levels is shown in Fig. 1.16.
By convention, the zero energy datum is chosen to sit at the bottom of
the conduction band, with non-conducting core electron states beneath.
The electrons fill energies upward until they reach the Fermi energy and
are contained in the solid by an energy barrier called the work function
¢, which is the difference between the vacuum energy FE,,. and Fermi
energy Frp.

1.6 Example: 1D Atomic Chain with a Diatomic Basis

We choose a diatomic 1D chain of atoms as shown schematically in Fig. 1.17
to demonstrate a slightly more complicated situation than the monatomic
chain of Section 1.4. The 2-atom basis produces an entirely separate phonon
branch, as derived below.

For details of phonon analysis for linear chains, the reader is referred to
Chapter 2 of Ziman (1972). We note that the definition of a here, which is
the distance between unit cells, is a bit different from Ziman’s, which does
not span a full unit cell but rather the distance between atoms within a cell.
Here we include the essential elements starting again with the Lagrangian
mechanics relation, F = mii = —VUM™™ (c¢f., Eq. (1.14)), where F is
the force on a particle of mass m with displacement u, and again U™
is the potential energy of the entire many-body system. Given the one-
dimensional nature of the present formulation, we drop the spatial vector
notation.
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E= Evac

Empty Electron
E=E; States

Work Function, ¢

Fig. 1.16 Sketch of filled and empty electron energy states. The work function, @,
is defined as the difference between the Fermi energy, Er, and the vacuum energy,
EV&C'

primary atom (1)
+

atom mass spring constant
m, g basis atom (2)

lattice constant
a

Fig. 1.17 Schematic of a 1D atomic chain with a two-atom basis.

In comparison to the monatomic chain, the index accounting for dif-
ferent atoms is more difficult when a basis atom is added (as well as any
additional displacement dimensions not considered here); consequently, a
matrix-based approach is required. To account for the discreteness of the
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system, we represent each atom’s displacement as u,, , where « is the basis
index (1 or 2) and 7 is the unit cell index. The equation of motion becomes
(Ziman, 1972):

ma’l'j,ma _ Z a82U'halfm U, = Z@n W U 3 (143)

Un, aaum B

where UPa™ for this 2-atom basis is:

1
yharm _ 592 (tn1 — tn2)” + (Uno — Unt11)> (1.44)

The matrix ®7 (hereafter called the ‘force constants matrix’) contains
the interatomic force constants between each atom pair (i.e., (n,«) and
(m, ). Inspection of Eqs. (1.43) and (1.44) reveals:

(1.45)
@Z:é _ (I) (I)n 1,2 (I)n+1 1 = —g.

Recognizing the symmetry of the problem (i.e., that all unit cells are
identical) and using a left-to-right numbering scheme, the force constants
matrix becomes:

P = Egg ;gg] . (1.46)

From the translational symmetry of the chain, the unit cell indices n and
m can be replaced by 0 and p, respectively, where p is simply an index that
begins at 0 and increases in unit steps away from the cell of interest (i.e.,
0). The Fourier transform of this matrix becomes the so-called dynamical
matrix of lattice dynamics analysis (Young and Maris, 1989):

1 .
B K
Dg meagmg €7a61 "
2 _ _iK (1.47)
iy T (L4 e7)
= B . ) ,
\/mlgmg (1 + e+l a) m_92

where 7, is the distance between the unit cells of the pair of atoms under
consideration and implied summation applies to the index p. The dynamical
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matrix emerges as part of the governing equation of motion (Eq. (1.43)) cast
in frequency space:

1 N
wia(K) = 7m‘1’€§§€zK“ﬁﬁ(K) = Dfig(K), (1.48)

where @ is the amplitude of displacement. The so-called secular equation

emerges from the foregoing expression and is used the extract the eigenval-

ues w?:

det |D — w’I| =0, (1.49)

where Iis the identity matrix (2 by 2 in this case). The solution of Eq. (1.49)
provides a form of the dispersion relation:

1 1 4q° K
wt —2¢ <— + —) w? 4+ —9sin? <_a> =0. (1.50)
mp Mg mimz 2

Using quadratic reduction, the foregoing result can be solved for w?:

2
1 1 1 1 4 K
w(K)2=g<—+—> :I:g\/(——i-—) - sin? (_a)
my mo mq mo mims 2

(1.51)

The ‘+’ term in Eq. (1.51) produces the peculiarity of having two possible
branches. The lower branch (defined as having the lower frequency, repre-
sented by w_) is the acoustic branch and is equivalent to that derived for
the monatomic chain (Eq. (1.22)). The upper branch (w4 ), called the opti-
cal branch, is new and represents generally out-of-phase vibrations between
neighboring atoms (i.e., the displacements of neighboring atoms are nearly
equal and opposite). The limiting forms at the Brillouin zone origin and
edges for both branches are:

. B g [
Il{lglow_(K)—Ka ST Il{lgloaq_(K)_ ™ (1.52)

w_<K:§>=\/fn:92; w+<K=§>: fn—gl, (1.53)

where p = (1/my + 1/m2) ™%, and may is the heavier of the two masses.
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The two branches of the dispersion are shown in Fig. 1.18. The curves
reveal an energy band gap between the branches that grows with increasing
contrast between the two atomic masses. Moreover, the shape of the optical
branch takes a generally flat character, suggesting that the group velocity
(dw/dK) is relatively small. Consequently, optical phonons are often ne-
glected in the calculation of thermal conductivity, in favor of the acoustic
branch.

2.0 . | . | , .

optical branch
1.5 | .
1.0

acoustic branc]

0.5

Normalized Frequency, w(K)(m,/g)"

0.0 . L . i I :
-1.0 -0.5 0.0 0.5 1.0

Normalized Wavevector, Ka/n

Fig. 1.18 Normalized frequency as a function of normalized wavevector for a diatomic
1D chain with mg = 2mjy.

Finally, we address a common source of confusion related to the ap-
plication of the diatomic dispersion results to the case of m; = ma (i.e.,
the monatomic case). Figure 1.19 shows the dispersion curve for the range
K € {-m/a,n/a}. Notably, the solution still predicts the presence of an
optical mode, and thus one might wonder whether the optical mode is sim-
ply an artifact of mathematics. However, careful inspection reveals that the
condition m; = mg produces one-eighth of a full sine wave for the acoustic
branch in the range K € {0,7/a} instead of the usual quarter sine wave
(cf., Figs. 1.13 and 1.18). The reason for this change is that the diatomic
analysis uses a lattice constant a = 2a that is exactly twice as large as that
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for the monatomic case (a = a) for this special case of m; = my. There-
fore, the range of K sampled in Fig. 1.19 is only half that of Fig. 1.13. The
missing portion of the dispersion curve is actually contained in the optical
branch, as shown in Fig. 1.19, which spans K € {0,27/a} and shows the
completion of the quarter sine wave by the ‘virtual’ optical branch. This
result provides an example of the importance of defining the primitive unit
cell, from which the 1st Brillouin zone derives, as the smallest symmetric
region necessary to fill exactly all space through the translation vector R.

1.7 Conclusion

This chapter has laid a foundation in crystallography and the fundamentals
of phonons and electrons, albeit in a highly idealized and simplified form.
Often the mathematics of these fundamentals can obscure more intuitive
or at least more familiar understanding. For example:

e The speed of sound in silicon (Si) is approximately 6400 m/s.
With its nearest neighbor distance of 0.235 nm and atomic mass
of 28.0855 g/mol, it is a straightforward exercise to estimate the
spring constant from the K — 0 limit (Eq. (1.25)) as ¢ = 35 N/m,
which is remarkably similar to the actual value (Zhang et al., 2007).

e Many metals have Fermi energies near Er = 5 eV. The corre-
sponding Fermi velocity is vp = /2Er/m. ~ 10° m/s, which
is roughly two orders of magnitude less than the speed of light,
co = 2.99792458 x 10% m/s.

Lastly, we include here a brief glossary of some the concepts covered in
this chapter:

e Primitive Cell: A region of space that is closer to one point than
any others.

e Bravais Lattice: A distribution of points in space that defines a
repeating pattern.

e 1st Brillouin Zone: The primitive cell of the reciprocal lattice.

e Miller Indices: Coordinates (hkl) of the shortest reciprocal lat-
tice vector normal to a given real-space plane.

e Group Velocity: The speed at which phonons carry energy in a
lattice (see Eq. (1.24)).
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Fig. 1.19 Normalized frequency as a function of normalized wavevector for a diatomic
1D chain, for the special case of m; = ma. (a) The usual range K € {—n/a,n/a}. (b)
The range K € {0, 2n/a}.
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Normal Mode: A lattice wave that is characterized by a branch,
wavevector, and frequency (and, later, polarization).

Phonon: a quantized lattice vibration (i.e., one that can take on
only a discrete energy, fiw).

Acoustic Phonons: Phonons that determine the speed of sound
in a solid and are characterized by w ~ K as K — 0.

Optical Phonons: Phonons that have flat dispersion, low group
velocity, and are characterized by non-zero w as K — 0.
Occupation Number: The number of carriers with a given
wavevector.
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Example Problems

Problem 1.1: Graphene reciprocal lattice
The primitive lattice vectors (@1, dz) of graphene are given by:

3., V3 .

C?l = 5&534— 7&y,
i = Bas_ V34
2 = 2 2 Y,

where a is the C-C bond length. Calculate the reciprocal lattice vectors
b1, by of graphene. Show that the primitive unit cell of the reciprocal
lattice (also known as the 1st Brillouin zone) is a hexagon with a side

4
length of ENGTE

Solution

The primitive lattice vectors are:

i =0+ Lag, =
1—2 B Y, 2 =

where ¢ is an arbitrarily large constant (no periodicity exists in the z
direction). The reciprocal lattice vectors are then given by:

—

ay, asz=cz, (1.54)

Z)}z?w%
a1~(a2><a3)
2w (1 1
=2 a4+ —3), 1.55
&<3x+\/§y> (1.5%)
52:2 as X aj

P — —g)) : (1.56)

=2z (1.57)
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where 53 — 0 as ¢ — oo indicating that the reciprocal lattice is two-
dimensional. Figure 1.20 shows the process involved in construction of
the reciprocal lattice. The I' point of the reciprocal lattice is joined to
its six nearest nelghbors given by the points by (point A) 52 (point C),

by + by (point B), —by (point D), —b (point F) and —by — by (point E).

Perpendicular bisectors (red dotted lines in Fig. 1.20) are then drawn
for each of these six line segments I'A, I'B, I'C, I'D, T'E and T'F. The
region of intersection of these perpendicular bisectors forms the hexag-
onal Brillouin zone of graphene.

The side of the hexagon can be obtained from simple trigonometry.
/MIK = L/MI'B = 30°. Thus MK = I'M/V3 = [b]/2V3 =
27/3v/3a. One side of the hexagonal Brillouin zone is 2MK =
47 /3+/3a.

31

Fig. 1.20 Construction of the graphene Brillouin zone.
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Problem 1.2: Dispersion relation for a 1D chain

(a) Consider a monoatomic 1D chain with nearest neighbor interac-
tions. Assume a spring constant ¢ = 25 N/m, atomic mass m =
28 amu and a lattice spacing of 5 A. Calculate the sound velocity
and the maximum possible phonon frequency.

(b) Now we generalize the monoatomic chain to include long-range in-
teractions among atoms. Assume that the spring constant between
two atoms separated by a distance of ja is given by g; where j is
an index that can take values 1,2, 3 and so on. Show that the new
dispersion relation is given by:

Z gj sinz(%jKa)

m

w=2
J

Solution

(a) Sound velocity is given by:

g
= ay/ L = 11594 m/s, 1.58
c=ay/— m/s (1.58)

where mass is converted to kg (1 amu = 1.6605 x 10727 kg). The
maximum phonon frequency is given by:

Winax = 2,/m = 4.63 x 10" rad/s, (1.59)

(b) When interactions are considered between all pairs of atoms, the
equation of motion for the atom at position na is given by:

Tulna) Zgj (n+ )a] ~ u(na)) - g;(u(na) ~ ul(n - j)a)

[(n+ j)a] — 2u(na) + u[(n — j)a]). (1.60)

nMé‘

Substituting the plane wave solution u(na) = exp (i(Kna — wt))
into the above equation produces:
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j=o0

—mw? = Z gj(exp (ijKa) — 2+ exp (—ijKa))
j=1

Jj=00 .
K
=3 —4g;sin? <‘7 2“). (1.61)
j=1

Thus the generalized dispersion relation is given by:

j=oo 271 -
gjsin“(5jKa)
=2 E = = 1.62
v = m ( )

Problem 1.3: Kinetic energy of the free electron gas

Obtain an expression for the total kinetic energy of the free electron
gas at T'= 0 K. Express your answer in terms of the Fermi energy Er
and the total number of electrons N.

Solution

The following expressions for Fermi wavevector and Fermi energy were
derived in the chapter:
B h2k2, B h?

kp = (302013, Ep = 2 )2/3, 1
r= 37 n)"", Er o, 2m6(37”7) (1.63)

The volume of a spherical shell in k-space with radius k& and thickness
dk is given by 4wk2dk. The number of states in this shell is given by:
Ank2dk
dN =2— 1.64
where the factor 2 accounts for spin degeneracy. The energy of each
state on the spherical shell of radius k is 72k? /2m.. The total energy of
electrons is obtained by integrating up to the maximum wavevector kp.
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o [ () ()

kr
2L3
_ / kdk
0

2m 2
R2L3kY,
10m 72
3 (kpLPN (WkE
T 5\ 3n2 2me,
N — —_——
N Ep

= gNEF. (1.65)

Problem 1.4: Phonon bandgap in a diatomic chain

Consider the diatomic chain (discussed in Section 1.6) with atomic
masses m, and meo. Assume that the spring constant is g for all the
bonds. At what point in the Brillouin zone is the bandgap (differ-
ence between the optical and acoustic branch frequencies) a minimum?
Obtain an expression for the non-dimensional bandgap (normalized by
v/ g/ma1) as a function of the mass ratio ma/m;. Use the online Chap-
ter 1 CDF tool? to observe the changes in shape of the acoustic and
optical branches for varying mass ratio.

Solution

Observation of the acoustic and optical branches of a diatomic chain
reveals that the bandgap is minimum at the edge of the Brillouin zone.
The dispersion relation for a 1D diatomic chain of atoms is given by
(see Eq. (1.51)):

2See http:/#/nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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The angular frequency at the edge of the Brillouin zone is obtained by
substituting K = 7/a:

o (k=D =2 v (k=T)= /2 e

The non-dimensional bandgap is given by:

w+(K=§)—w_(K:1

) a):\@(l_ @), (mg > my).
\/mjl (1.68)

m2
From the above expression, the bandgap increases with increasing mis-
match between the masses m, and ms. Figure 1.21 shows snapshots of
the dispersion curves from the online Chapter 1 CDF tool. The opti-
cal branch flattens and the maximum frequency of the acoustic branch
reduces for increasing mo/ms.
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Fig. 1.21 Dispersion curves of the diatomic chain for increasing ma/mj.



Chapter 2

Carrier Statistics

2.1 Introduction

Before proceeding further into details of nanoscale structure and energy
transport, we first consider in this chapter an important distinction be-
tween nanoscience and nanotechnology. The former has been practiced for
a century, ever since the nature of atomic structure was uncovered by the
likes of Ernest Rutherford, Niels Bohr, and Marie Curie. The foundations of
nanotechnology were similarly laid by researchers in the physical sciences,
but nanotechnology is almost always characterized by a unique, collective
behavior of an ensemble of nanoscale objects. In other words, nanotechnol-
ogy encompasses phenomena that occur because of unique subcontinuum
effects and that also can be directed towards a useful technological purpose.

The discipline of statistical mechanics provides the tools to achieve de-
scriptions of large assemblies of nanoscale objects and is the primary subject
of this chapter. Once again, we provide here only the basic essentials, while
directing the motivated reader to more comprehensive coverage in topical
books by, for example, Chandler (1987) and Laurendeau (2005).

2.2 Statistical Ensembles

A collection of energetic particles can be characterized by its number of
particles NV, volume V', and energy E. The collection can exist in a variety
of states in which the foregoing variables may change upon application of
a suitable perturbation. To analyze the diversity of states, we invoke the
fundamental premise of statistical mechanics (Chandler, 1987):

During a measurement (e.g., of temperature), every possible
state does in fact occur such that observed properties are aver-

ages of all possible states.

37
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The statistics of any ensemble can be described by defining its allowed
states, and each state can be represented by v = (N, V, E). We define 2, as
the number of possible arrangements of the ensemble that can produce the
state v within dE of energy E. The fundamental statistical assumption that
all states are equally probable then implies the probability that a particle
will be in a state v is:

P =—. (2.1)

The number of states also provides insight into the randomness that is
possible in a given ensemble. Such disorder forms the essence of the ther-
modynamic property called entropy, which was derived by Boltzmann as:

S=kpln(Q,). (2.2)
This result, when combined with the Maxwell relations (Laurendeau, 2005),
produces a statistical definition for temperature:

1 oS
T (a—E)N,V’ (23)

or

1 0lnQ,
=7~ (755, @4

where the term 3 is a common thermodynamic expression for the inverse
of ‘thermal energy’ kpT'.

Various permutations and restrictions can be applied to an ensemble
in order to change its state. Energy and particle number are the most
important such properties for our purposes. If these properties are allowed
to vary within an ensemble, then the probability of a state v can be shown
to be Laurendeau (2005):

— exp(_ﬁEv + ﬂﬂNu)

—

P, , (2.5)

where

==Y exp(=fE, + fuN,), (2:6)

and where p is the electrochemical potential; the latter equation defines the
ensemble’s partition function =, which is essentially a normalizing factor
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to ensure that the total probability sums to unity. Further, the quantifi-
cation of ensemble statistics allows the calculation of averages through by
taking ‘moments’ of probability. For example, an average energy can be
calculated as:

(E)=>_P,E,. (2.7)

An ensemble in which both the energy and number of particles are
allowed to vary is termed the grand canonical ensemble. A given state will
have Nj particles each with energy Ej, N» particles with energy Es, and
so on. Their average total energy and particle numbers can be expressed
using Egs. (2.5)—(2.7) as:

(E) = —(%)MV, (2.8)
(N) = (%)M 29)

The statistics of the particles of interest here can be described in this
manner, noting that:

e Bose-Einstein statistics, which govern phonons and photons, allow
integer occupation numbers N, =0,1,2,3,....

e Fermi-Dirac statistics, which govern electrons, allow only binary
occupation numbers N, = 0 or 1, as a result of the Pauli exclusion
principle (Ashcroft and Mermin, 1976).

e Both of the above statistics converge at very high particle ener-
gies (relative to the thermal energy kpT) to classical Maxwell-
Boltzmann occupation statistics.

The resulting average occupation numbers (N, ), despite these differences,
can be expressed in a general form as:

° 1
fi = E,—pu
e kBT + ry
v =1 (Fermi-Dirac, i = F D) ’
v = —1 (Bose-Einstein, i = BE)
v =0 (Maxwell-Boltzmann, ¢ = M B)

(2.10)
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where the equilibrium ‘distribution function’ f? is synonymous with the
average occupation number and is used hereafter. The Maxwell-Boltzmann
distribution (v = 0) represents the limit (E; — p) > kT for both Fermi-
Dirac and Bose-Einstein distributions.

The electrochemical potential depends on the enumeration of carriers.
It is zero for systems with an indefinite number of carriers (i.e., phonons
and photons) (Pathria and Beale, 2011). The Helmholtz free energy can be
expressed as A = uN —pV, and if N is unbounded, the equilibrium number
of particles N must be determined by minimizing A with respect to IV,
which by definition requires (0A/9N)y = pu = 0. For phonons and thermal
photons (which are both called ‘bosons’ because they follow Bose-Einstein
statistics) u is zero because these particles can be created or destroyed at
random without a change in the electrochemical potential. For electrons in
metals, which have a finite number of carriers, ; can be approximated in
terms of the Fermi energy Er and temperature as (Ashcroft and Mermin,

1976):
o (M)
12 \ Ep
where the Fermi energy represents the highest occupied energy at absolute
zero temperature and was expressed for a free-electron gas previously in
Eq. (1.40) (See also Eq. (5.20) of Zhang (2007)).

As an example, consider a distribution of phonons from which we choose
those with a particular frequency w,. While the energy of each of these
phonons has already been shown to be hw,, the actual number of such
phonons at a given temperature must be determined from statistics. In
accord with the energy of a given phonon mode derived in the previous
chapter (see Eq. (1.26)), the average (or expected) energy of all phonons at
this frequency is:

i~ Ep , (2.11)

(£) = o { FpelnT) + 5|

o {fen(f) -1 T4 e

where the 1/2 term accounts for zero-point energy (i.e., energy at zero
absolute temperature). Figure 2.1 shows the resulting variation of average
energy for phonons at frequencies of w, = 10" and w, = 10 rad/s. The
figure also contains a comparison with the classical energy kT that arises
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Fig. 2.1 Temperature-dependent energy of a classical harmonic oscillator and two quan-
tum harmonic oscillators at @ = 10'3 rad/s and @ = 10 rad/s. The zero-point energy
for quantum oscillators is on the y-axis.

from the equipartition theorem (Laurendeau, 2005). In this case, half of
the ‘thermal energy’ kg1 comes from the average kinetic energy in a single
direction (kpT'/2), while the other half originates from the average potential
energy in the bonds.

Clearly, temperature is intimately related to energy in both classical
and quantum systems. For a simple (classical) harmonic oscillator, the
relationship is direct: (Eiot) = kpT. For a quantum harmonic oscillator,
the temperature dependence is contained within the occupation number:
(Etot) = hw [fap(w,T)+1/2]. To complicate matters further, an atomic
lattice can support many harmonic oscillators (according to the dispersion
relation), and we need to sum (average) over all of their frequencies to find
temperature. The results of Fig. 2.1 suggest that phonons oscillating at
frequencies of w = 103 rad/s (and lower) can be approximated by classical
statistics for all except cryogenic temperatures (i.e., below liquid nitrogen
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temperature, 77 K), whereas phonons at w = 10'* rad/s require quantum
statistics, even well above room temperature. The general guideline for
assessing whether a classical approximation is appropriate is to evaluate

_ _hw .
X = 7nT- For example, at room temperature:

h x 10 rad/s

T = 0.25 (x < 1, classical approximation is reasonable)
B

h x 10 rad/s

T = 2.5 (x > 1, classical approximation is not reasonable).
B

2.3 Phonon Density of States

The need to quantify the number of states around a certain energy or
wavevector is common in the integral analysis of phonons. The associated
quantity is called the density of states and describes the number of allowable
phonon states per unit ‘volume’ (i.e., length in 1D, area in 2D, true volume
in 3D) per unit energy or wavevector, depending on context. Recalling
the restriction on allowable wavevectors from the looped 1D chain example
(see Eq. (1.19)), we notice that allowable wavevectors are separated by a k-
space increment of 27 /L, where L = aN (N is the number of primitive unit
cells; for cells with a single atom per unit cell NV is therefore the number
atoms). We find a similar result for 2D and 3D lattices for which each
allowable wavevector occupies a k-space ‘volume’ of (27/L)%, where d is
dimensionality.

The number of states is calculated by forming the ratio of a smooth (i.e.,
circular in 2D, spherical in 3D) k-space ‘volume’ to that of an individual
state, as shown in Fig. 2.2. One subtlety of the foregoing development
is that K can take both positive and negative values, and therefore with
K defined as the absolute magnitude of K (i.e., K = |K|), one allowable
wavevector exists for each increment of 77/L in the 1D k-space (which, by
definition, is strictly positive) as a special case. Therefore, the number of
allowed phonon states from 0 to K (which, recall, is the absolute magnitude
of K) for 1-, 2-, and 3-dimensional systems is:

2K

Nip = ———
1D QTI'/L’

(2.13)
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TK?
Nop = —— 2.14
P qn /2 (2.14)
AT K3
miK7/3 (2.15)

N3p = ———=.
3P 8m3 /L3

Once this number of allowed modes or phonons is known, the density of
such states (per unit wavevector and real-space ‘volume’) can be expressed

as:
1dNip 1
Dip(K) = I dK 7 (2.16)
1dNep K
Dop(K) = 15— = 5 (2.17)
K2
(2.18)

1 dNs3p
Dsp(K) = — =—.

oK) = 15700 = 3o
The density of states is often described with respect to phonon fre-
quency instead of wavevector. This transformation is made quite readily
using the chain rule and the definition of phonon group velocity (vq(w) =

dw /dK):
) 1dNip 1dNipdK 1
D =_ == alalp . S 2.1
10(w) L dw L dK dw vg(w)w’ (2.19)
1 dNQD 1 dNQD dK K(w)
@) = 270 T Ik dw 270, ()’ (2:20)
(2.21)

- 1 dN3D o 1 dN3D dK - K(w)2
L3 dw L3 dK dw  27m2v4(w)’

D3D (CL))

where, as we have shown previously (see Eq. (1.22)), the phonon group
velocity generally depends on frequency (and thus the wavevector through

the dispersion relation).
simplified for phonon transport through the Debye approximation, which

assumes linear dispersion w = vg ave K and places an upper bound wp on

At this point in the development, the K(w) relations above are often
frequency in order to match the total number of possible phonon states.
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Fig. 2.2  k-space in 2D and 3D. Minimum separation between allowable wavevectors is
27”. k-space spherical ‘volume’ (circular area for 2D) is depicted in the figure.

The resulting density of states for a bulk material becomes:

w2

2712113’3\,6
where vg ave is an appropriately averaged phonon velocity among the acous-
tic polarizations and 7, is the number of unit cells per unit volume of real

space. For now, we will refrain from making this approximation.

D3p pebye(w) , forw <wp = vg,ave(fiwzna)l/?’, (2.22)
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2.4 Electron Density of States

Electron states are similarly restricted, as shown in Section 1.5 for the
particle-in-box problem. The result, Eq. (1.37), in combination with the
parabolic dispersion of Eq. (1.34) provides us with analogues to the forego-
ing analysis of phonons.

The electron density of states is almost always expressed per unit energy
E as D(F) (this convention allows us to distinguish it from the phonon
density of states, which is usually described in terms of frequency w, cf.
Eq. (2.21)). Given the quantum relation F = hw between energy and
frequency, the density of states per unit energy is closely related to that
given above for phonon density of states per unit frequency. Accordingly,
the electronic density of states can be expressed as D(E) = 2D(w)/h, where
the factor of 2 accounts for spin degeneracy. The resulting expressions in
each dimensionality follow:

Dip(E) = %(QE)’ (2.23)
Dyp(E) = :;:327 (2.24)
Ds3p(E) = ”;fig) (2.25)

where m, is the electron rest mass, and we have made use of the momentum
relation mevy = hk.

The same result can be derived by integrating over k-space using Dirac
delta functions for allowable states (Lundstrom, 2009):

D(B) = 73 S5 [B() — E(H),
-

212 p2p02
_ 2 / 5 | O d?
@m)* Jiw \2me  2m.

(1D)

2me
Thy/2meFE
m
= ——= (2D

M/ 2MmeE
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where in this set of equations we have made the parabolic band approxi-
mation for k(FE), namely:

h2k? V2m.E
E = 2me or k'(E) = T (227)

Figure 2.3 shows a parabolic electron band with two ranges of k-space.
The allowed states are equally distributed in k-space, but corresponding
mapping of energies from allowed k-states shows a higher density of states
at low energies (and low wavevectors), where the band is flattest.

A schematic of the resulting electron density of states appears in Fig. 2.4.
The curves for confined structures (quantum wells, wires, and dots) contain
multiple ‘bands’ that build upon each other and generally follow the overall
VE trend of the curve for a bulk conductor.

For greater depth, the reader is referred to the nanoHUB’s ‘CNTbands’
tool (Seol et al., 2011a), which calculates the geometry, band structure,
and density of states of single-walled carbon nanotubes. As an example,
Fig. 2.5 shows results for a (12, 12) CNT.

2mgal
Nomalized Encrgy, Ex(— )
TRY PO

\ 031 .

At

ol s e
g g

T T T

I
-10 -0.5 00 05 10 n

Fig. 2.3 Parabolic electron energy band (with normalized band edge at E¢ norm = 0.5)
and corresponding allowable k-states at low and high wavevectors.
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Fig. 2.4 Electron density of states for 0D (quantum dot), 1D (quantum wire), 2D
(quantum well), and 3D (bulk) materials. Bulk material density of states follows a VE
dependence, whereas confined material densities of states present discontinuities due to
multiple band-folding from confined dimensions.

2.5 Example: Derivation of Planck’s Law

This section provides a brief derivation of Planck’s law of blackbody ra-
diation from basic statistical principles, as an example of a ‘boson’ ther-
mal field. For more information, the reader is referred to the textbook by
Rybicki and Lightman (2008). The reader might also find interest in the

historical development of early research in radiation physics as surveyed by
Barr (1960).

2.5.1 Photon Gas in a Box

First, consider a cubic box with each side of length L filled with electro-
magnetic (EM) radiation (a so-called ‘photon gas’) that forms standing
waves whose allowable wavelengths are restricted by the size of the box.
We will assume that the waves do not interact and therefore can be sepa-
rated into the three orthogonal Cartesian directions such that the allowable
wavelengths are:

A==, (2.28)
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Fig. 2.5 Geometry and density of states of a (12,12) single-walled carbon nanotube
(SWCNT). Refer to https://nanohub.org/resources/cntbands-ext for the online tool.

where n; is an integer greater than zero, and i represents one of the three
Cartesian directions—z, y, or z.

From quantum mechanics, the energy of a given mode (i.e., an allowable
set ng, ny,n,) can be expressed as:

1
E(N) = <N+ 5) ;L—z,/n% +n2 +n2, (2.29)

where h is Planck’s constant (6.626 x 10734J s). The number N represents
the number of such modes, or photons, with the set of quantum numbers
{nz,ny,n.}. Importantly, unlike electrons, an unlimited number of modes,
or photons, of a given energy can exist; thus, photons are governed by
Bose-Einstein statistics, for which the average (N) = f3%p according to
Eq. (2.9).

2.5.2 Statistical Mechanics of the Photon Gas

To derive the energy density in this photon gas, we first need to know the
relative probability with which a given energy state E(N) is occupied at
a given temperature. Here, we turn to statistical mechanics, which reveals
this probability as:

py = SP(EBEWN)) (2.30)

Z(8)
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where (3 is the inverse of thermal energy, or 3 = (kgT)~!, and Z(f3) is the
partition function that normalizes the probability as:

= 1
2 = exp(~BE(N)) = ———, (2.31)
by e
where € = g—f, /n2 + n% +n? = % is the energy of a single photon, and the

latter equality derives from the relationship between the wavelength A and
the n; indices of the EM waves in the box. This wavelength is related to
the speed of light ¢ and frequency v through the familiar relation

Again from statistical mechanics (and specifically Bose-Einstein statis-

tics), the average energy within a given mode can be expressed as

(BW) =257 = et (2.33)

where the zero point energy is neglected.

2.5.3 FEnergy Density of the Photon Gas

Now that we have an expression for the average energy of a given mode,
we can sum (integrate) over all modes to find the total specific energy
within the photon gas. This energy can be expressed as an integral over all
energies:

v / "B D(2)d=
0

o €
= /0 WD(E)ds, (2.34)

where D(¢) is the density of states that gives the number of allowed modes
per unit volume and per unit energy within an interval between e and
€ 4+ de. This function can be derived from the allowable wavelengths and n
indices as:

8
D(e)de = mszda. (2.35)
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The total energy per unit volume (or ‘specific’ energy) can now be ex-
pressed as

< 8r el
= d 2.36
b /0 h3c3 exp(fe) — 1 = (2:36)

where the integrand is the spectral energy density u’. This function can
be expressed in terms of an energy, wavelength, or frequency spectral basis
through the relation € = he/ such that different forms of v’ are commonly
used. However, they are each integrands in expressions that are used to
calculate the overall energy density as:

= u(r) = /0 (e, T)dz = /0 W\ T)dA = /0 (v, T)dv. (2.37)

The corresponding expressions for spectral energy density follow:

3
W'(e,T) = hSW = : (2.38)
¢ exp (k;T> 1
8mhe 1
u'(\T) = G — , (2.39)
exp <—)\kBT> -1
3
o' (v, T) = 8”;” ! , (2.40)
€ exp (k';’}) -1
hw)? 1
W (w,T) = ( (2.41)
m2h?c? exp (khB—‘”> -1

2.5.4 Blackbody Emission Intensity

Now assume that a small hole is cut into the box as shown in Fig. 2.6. All
radiation emanating from this hole will be moving at the speed of light c.
Also, the radiation will be uniformly distributed throughout the hemisphere
of solid angles (27 steradians), and one half of the energy will be oriented
such that it can move outward through the hole.

The spectral radiation intensity is defined as the rate of energy emitted
per unit area per unit solid angle and per unit wavelength. The rate of
energy emitted per area is simply the product of the energy density derived
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Fig. 2.6 Blackbody emission from a small hole in a box.

above and the speed of light (i.e., the distance swept by a ray per unit of
time). Therefore, the spectral intensity becomes:

u c c?
H&ﬂzl[(;m]:% L . (2.42)

2 A5 hc
eXp (/\kBT> -1

Similarly, the spectral intensity (per unit frequency v instead of wave-
length) is:

1[u (v, T 2hv3 1
1) = L [LT)e} _ 20w . (2.43)
2 27 c? ox ( hv ) -1
P\ 7T
And finally, the intensity per unit angular frequency w = 27v is:
1 [v'(w, T hw? 1
u%ﬂ:—r”%)ﬂ: - . (2.44)
2 2 4dm3c exp (kaT) _1

This distribution is plotted for different temperatures in Fig. 2.7.

The foregoing analysis of electromagnetic transport with photons high-
lights the convergence of statistical distributions and energy states. The
results emphasize particularly well the spectral behavior of transport and its
interrelationship with temperature. Subsequent chapters will demonstrate
similar concepts for phonons and electrons.
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Fig. 2.7 Spectral intensity (per unit angular frequency w) as a function of angular fre-
quency at different temperatures. The frequency at maximum spectral intensity increases
with increasing temperature, according to Wien’s displacement law (Modest, 2003).
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Example Problems

Problem 2.1: Getting a feel for the numbers (note: this
problem has been adapted from Kaviany (2008))

(a) The maximum energies of acoustic and optical phonons in graphene
are 0.16 eV and 0.21 eV respectively. Determine f3, at T = 300
and 3000 K, for these two energies.

(b) The Fermi energy of aluminum is 11.7 V. Assuming that the chem-
ical potential is equal to the Fermi energy, determine fg, for £ =
1, 11.5 and 20 eV. Calculate the occupation numbers at T' = 1 and
3000 K.

(c) The average thermal speed of monoatomic gas molecules is given
by +/8kpT/(mm). Determine the average speed, kinetic energy
and the Maxwell-Boltzmann energy distribution function fg,5 (at
the average energy) for argon gas at 7' = 300 K.

(d) The surface temperature of the sun can be approximated to be
about 5700 K. Determine fg for photons emitted from the sun
at A =100 nm (UV), A = 600 nm (visible) and A = 900 nm (IR).

Solution

(a) The Bose-Einstein distribution is given by:
I35 =~
BE ™ oxp(E/kpT) — 1’

(2.45)

At T =300 K, kgT = 0.026 eV. Thus, fg, = 0.002 for £ = 0.16
eV and fgp = 0.0003 for £ = 0.21 eV. At T' = 3000 K, kpT =
0.258 eV. Thus, fgyp = 1.164 for £ = 0.16 eV and fZy = 0.796
for E = 0.21 eV. The occupation numbers increase with increasing
temperature (see Fig. 2.8a). Also note that f%, can be greater
than 1 because the Pauli exclusion principle does not apply for
bosons.
(b) The Fermi-Dirac distribution is given by:
o 1
Tip = exp((F — p)/kpT)+1°

(2.46)

At T=1K, kgT =8.63x 1075 eV. Thus f&, =1for E=1¢eV,
fep=1for E=11.5¢eV and fp, =0 for £ =20eV.
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At T = 3000 K, kgT = 0.258 eV. Thus fpp, = 1for E =1 eV,
fep = 0.68 for E = 11.5 eV and fg, = 0 for £ = 20 eV. The
Fermi-Dirac distribution changes from 1 to 0 in a small energy
window (of the order of kgT') around the electrochemical potential
(see Fig. 2.8b).

From the given expression, the average thermal speed of argon
atoms (m = 40 amu. = 6.64 x 10726 kg) at 7' = 300 K is 398.8
m/s. Thus the average kinetic energy is:

1
E=om Arv? =0.033 eV. (2.47)

The Maxwell-Boltzmann distribution is given by ff,z =
exp(—E/kpT) = 0.28.

For a given wavelength A, the energy of a photon is E = hc/A.
Thus F = 12.42 eV for A = 100 nm, F = 2.07 eV for A = 600 nm
and F = 1.38 eV for A = 900 nm. Also kT = 0.49 eV at T' = 5700
K. Thus f%p = 9.82 x 1072 for A\ = 100 nm, f%, = 0.0148 for
A =600 nm and fg, = 0.063 for A = 900 nm.

Problem 2.2: Working with the Bose-FEinstein distribu-
tion function

(a) The energy levels of a quantum harmonic oscillator are given by:

1

where n = 0,1,2.... Obtain an expression for the partition func-
tion E (you will need to sum an infinite geometric series) defined
by (1 = 0 for phonons):

2= exp(—BE,).

Obtain an expression for the average energy (F) defined by:
OlnE

5

Show that the average energy of the mode with frequency w can

be written as fiw (fg5 + 1), where f§, denotes the Bose-Einstein

distribution function.

(E) =
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Solution

(a) The partition function E is given by:

2= Z exp (—0FEy,)

i exp (=6 (n +1/2) hw)
n=0

exp(—fhw/2)

= [ (2.48)
(b) The average energy (F) is given by:
Oln=
(B) = =55
0 Bhw
=98 (‘T —In(1- eXP(—ﬂfw)))
_ hw | hwexp(—fhw)
T2 1 —exp(—fhw)
1 1

=t (=i +3)
= hw (fng + %) (2.49)

Problem 2.3: Phonon DOS in graphene

The dispersion relation for graphene (excluding optical branches),
which is a two-dimensional material, is shown in Fig. 2.9. Graphene
has three acoustic branches commonly known as the LA, TA and ZA
modes. The LA and TA modes can be approximated by a linear dis-
persion relation while the ZA mode, which represents out-of-plane vi-
brations, is more closely represented by a quadratic dispersion relation
near the Brillouin zone center (see Appendix). Obtain an expression
for the phonon density of states D(w) at three different frequencies wy,
wo, and ws as indicated in Fig. 2.9.
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Solution
The DOS for the LA mode is given by:

_ 1avdK
T L2dK dw
1 L?°K _ TK? d_w Y

T (@rn/L)? dK "

- Vg1 L2 2

DLA(w)
(2.50)

. w
Rz
Similarly, the DOS for the linear TA mode is given by:
w
D = —. 2.51
ral) = 35 (251)

The DOS for the quadratic ZA mode is given by:
1 dNdK
- L2dK dw
K2
T dw 9 K)

2
1 LK yo TR
@2r/L)? dK

T 2eKIL? 2r

DZA(w)
(2.52)

1

~ 4nc’

All three modes are present at wy. Thus,
Diot(wi) = Dpa(wi) + Dra(wi) + Dza(wr)
1
— 2.53
4me ( )

w1
2
2mug,

htp

©World

w1
- 2
2mug

Only the LA and TA modes are active at ws:
(2.54)

Dyot(w2) = Dpa(wz) + Dra(w2)

w2
- 2
2mug

w2
5
2mugy

Only the LA mode is active at ws:
Dyot(w3) = Dra(ws)
w3
= : 2.55
217, (2:55)
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OW

Problem 2.4: Phonon frequency at maximum intensity

Wien’s displacement law for electromagnetic radiation relates the pho-
ton wavelength at which the energy distribution is maximum to the
temperature. In this problem we derive a similar relation for phonons,
except in frequency space. Assume a 3D material with a single phonon
branch having a constant group velocity v, (Debye approximation).

e Show that the dominant phonon frequency (frequency at which
the spectral energy distribution is maximum) wpyax as a func-
tion of temperature T is given by fiwmax = CkpT where C' is
a constant of proportionality. Neglect the zero-point energy in
your analysis.

e Use the online Chapter 2 CDF tool' to observe the spectral
phonon energy distribution as a function of temperature.

e Verify the relation you obtained for the maximum phonon fre-
quency by tabulating the maximum points in the curve for a
few different temperatures. Also obtain the constant C.

2.5.4.1 Solution

Under the Debye approximation, the density of states D(w) is given
by:
2

w
Dw) =——. 2.
@)= 573 (2.56)
The spectral energy density w(w,T) is then given by:
w? 1
T)= hw
u(w,T) ~~ 2m2v3 exp(hw/kpT) — 1
energy \ ,
DOS occupation
h 3
- d (2.57)

2n2v3 exp(hw/kpT) — 1
At a given temperature, spectral energy density is a maximum when
gu = 0. Thus,
h

3w?(exp(hw/kpT) — 1) — w? exp(hw/kBT)kB—T =0. (2.58)

ISee http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki

57
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Defining z* = hw/kgT, we arrive at the following implicit equation
for x*.

3(1 —exp(—a™)) = ™. (2.59)

e The above equation can be solved numerically (using
WolframAlpha? for example) to obtain z* = 2.82. Thus
hwmax = 2.82 kpT. The frequency at which the spectral energy
distribution is a maximum increases linearly with temperature.
In other words, the peak wavelength is inversely proportional
to temperature.

e Figure 2.10 shows snapshots from the online Chapter 2
CDF tool where the spectral energy distribution is plotted for
three different temperatures. The peak of the curves moves to
the right for increasing temperature.

e Use the online tool to tabulate wpayx for a few different tem-
peratures and confirm the linear relationship between wpax
and 7T

2

OW

2See http: //www.wolframalpha.com/input/?1=solve+3(1-exp(-x))+%3D+x
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Fig. 2.8 (a) Bose-Einstein distribution function. (b) Fermi-Dirac distribution function.
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Chapter 3

Basic Thermal Properties

3.1 Introduction

The energy density analysis discussed in Section 2.5.3 provided important
insights about the inter-relationship between carrier energy and carrier
statistics for photons. A similar analysis for phonons and electrons (and
their respective energy levels and statistics) will provide the basis for the
property known as internal energy. This property should be familiar to
those who have studied classical or statistical thermodynamics, as should
the related quantity called specific heat. For a given collection of carriers,
knowledge of its internal energy and dependence on temperature (which
derives from its statistics) allows explicit calculation of volumetric specific
heat as:

ou(T)
or ’

Cp = (3.1)
where the normalizing quantity (i.e., the ‘amount’ of the ensemble by which
u(T') is normalized) can be either volume or mass. In Eq. (2.37) from the
previous chapter, volume is the normalizing quantity for u(T").

The specific heat quantifies the ability of a set of energy carriers to
store thermal energy relative to the temperature rise required to store this
energy. At the same time, these carriers can move within a material or con-
trol volume and while doing so transport thermal energy. Consequently, the
average speed with which the carriers move combined with the amount of
energy that they carry provides the foundation of the important thermal
transport property known as thermal conductivity. We develop these con-
cepts in the present chapter for the carriers of most interest here—phonons
and electrons.

61
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3.2 Specific Heat

The most general expression for the extensive (i.e., not specific, or intensive)
internal energy U is:

U= zk:ZEi,p(k)ff [E:p(K), T, (3.2)

where we have neglected zero-point energy. The foregoing equation is the
summation form of the integral expression (Eq. (2.34)) used in the deriva-
tion of Planck’s law for photons, in which the concept of density of states
was employed somewhat obsequiously to convert sums to integrals. This
duality between summative and integral forms of quantities will persist
throughout subsequent analysis both because of various preferences that
have evolved in different communities of theorists and because sometimes
the summative form is more analytically convenient than the integral form
and vice versa, depending on context. Here, we seek first to relieve some of
the common confusion associated with the dual forms.

We first recognize that k-space summation is often cumbersome. A
general conversion from summation to integration of a function F' in k-
space is:

(3.3)

thr;o%gz«“(k) :/F(k)

where F'(k) is a generic function in a k-space of dimension d (which matches
the real-space dimension of a given problem). This conversion derives from
the fact that each allowable states k-space volume is (27/L)%. Applied to
Eq. (3.2), the internal energy can be expressed in integral form as:

U Ei p(K) [0 [Eip(K), T
u:ﬁ:%:/ *()f(%[r)d() o (3.4)

And then using Eq. (3.1), specific heat can be expressed as:

ey = 8T Z/ %da—Tk (3.5)

where

Of ov2 (Ei—p)/ksT Ei—p
9T (f7)7e kgT? )~ (3.6)
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For many (most, really) problems, the d-dimensional k-space integral
remains cumbersome, and therefore, the concept of density of states is
used to convert the multi-dimensional integral to a single dimension (either
energy or frequency). We apply this process to different carrier types in
the following subsections.

3.2.1 Acoustic Phonon Specific Heat

The k-space integral in Eq. (3.5) explicitly calls for knowledge of the
energy-wavevector relation (E;,(k)). For phonons, this relation is typ-
ically expressed in terms of frequency and wavevector through the dis-
persion relation. In Chapter 1, we derived the dispersion relation for
an acoustic phonon branch in the idealized one-dimensional atomic chain
(Eq. (1.22)). In higher dimensions, an atom can move in more than one
direction, as shown in Fig. 3.1. These extra dimensions create additional
phonon ‘branches’ whose dispersion is generally similar to the longitudinal
branch (see Fig. 1.13), except that the effective spring constant g differs,
resulting in a different maximum phonon frequency at the edge of the Bril-
louin zone. Further, three-dimensional crystals with appropriate lattice
symmetry relative to the propagation direction of interest can exhibit de-
generacy such that the two transverse branches have identical dispersion
relations.

The curvature of the acoustic phonon dispersion relation and associated
factors that cause real materials to deviate from the ideal sine function of
Eq. (1.22) has motivated the use of a simplified dispersion model. The most
prominent among these is the Debye approximation (Debye, 1912), which
approximates the sine function as a line through the w-K origin:

W(EK) ~ Vg ave K. (3.7)

This approximation, however, cannot be applied blindly because doing so
would fail to account for the finite number of allowable phonon states as
discussed in Section 2.3. The Debye frequency represents the maximum
allowable frequency such that the number of states (N) in a given branch

matches the number of allowed wavevectors.
To determine the number of independent wavevectors in a Brillouin
zone, the following statement from Ziman (1972, p. 25) is crucial:

[T]here are exactly as many allowed wave-vectors in a Brillouin
zone as there are unit cells in a block of crystal.
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wave EroEaEation )

direction

transverse

Fig. 3.1 Longitudinal and transverse phonon branches. Atoms vibrate along the wave
propagation direction in the longitudinal mode. In the transverse mode, atoms vibrate
perpendicular to the wave propagation direction.

The number of allowed states in each dimensionality as a function of the
magnitude of the wavevector K was given previously (Eq. (2.13)—(2.15)).
Setting the number of states to equal the number of unit cells in the crystal,
the Debye wavevectors are:
KD,lD = TMNa, (38)
KD72D = (47T77a)1/2, (39)

Kpap = (6m2n,)'3, (3.10)
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where 7, is the number of unit cells per unit ‘volume’ of the given
dimensionality (i.e., length for 1D, area for 2D, and true volume for 3D).
Substituting the Debye dispersion relation gives the Debye frequency:

WpD,1D = Vg,aveT]a, (311)
Wp2D = vg,ave(47rna)1/27 (312)
Wp.3D = Ug,ave(677277a)1/3. (313)

A common tabulated representation of the Debye frequency for bulk
(3D) materials is the Debye temperature:

h ave 6 2 a 1/3
_Iwpsp  Mpae(6700.) (3.14)

)
p kn kg

One subtle point of clarification is important here, because the foregoing
Debye quantities are often expressed in terms of the atomic density instead
of the unit cell density. The former is substantially easier to calculate
because it can be derived easily from knowledge of a crystal’s mass density
and constituent atomic mass(es). Of course, the two are equivalent for
crystals with one atom per unit cell (i.e., with no basis atoms). In contrast,
as described in Section 1.6 the presence of basis atoms produces entirely new
phonon branches (cf., the optical branch in the 1D diatomic chain example).
If our intention is to approximate both acoustic and optical branches with
the linear-dispersion Debye approximation, then we would replace the unit
cell density 7, in the foregoing equations with n x 7,, where n represents
the number of atoms per unit cell.

This approximation may be reasonable with the understanding that the
Debye wavevector will extend substantially beyond the edge of the Brillouin
zone boundary, as shown in Fig. 3.2, to include the extension of the optical
branch into the ‘second’ Brillouin zone. However, as we will see in the
subsequent section, an entirely different model for specific heat is often
most appropriate for optical phonons, in which case the unit cell density
alone should be used in calculating Debye metrics. For readers seeking
further details, Ashcroft and Mermin (1976, pp. 462-463) clarify this issue
particularly well.

The general results for phonon density of states in frequency space
(Egs. (2.19)—(2.21)) become, under the Debye approximation:

1
Dpip(w) =

(3.15)

)
Vg,aveT
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A w(K)

actual
dispersion

< > K
\ Debye / Debye
frequency approximation
|
K, % % Ko

cut-off wavevector

Fig. 3.2 Debye’s linear approximation to the phonon dispersion. The Debye cutoff
wavevector, K p, is chosen such that it contains allowed wavevectors equalling the number
of ions in the crystal. Debye quantities such as the Debye cutoff wavevector, Kp, and
the associated Debye cutoff frequency, wp, are depicted.

w

D = 3.16
p2p(W) PR (3.16)
2
w
D = — 3.17
D,3D (w) 271-2@3’3,\76 ’ ( )

where these results are applicable for w < wp. For most of the foregoing
Debye quantities, the average group velocity plays an important role. Often,
the long-wavelength velocity [22]
suitable for low-temperature conditions in which the phonon population is
dominated by low frequencies. However, even in such cases, the single value
of vg.ave implies k-space symmetry in the applicable directions. Further,
in some prior work, a single group velocity is defined as an amalgam of

is used. This approximation is most
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the transverse and longitudinal branches. Instead of enumerating all of the
possible representations for group velocity here, the reader is cautioned to
scrutinize the definition of group velocity for any work that employs the
Debye approximation.

Given the foregoing assumptions (and particularly re-emphasizing the
k-space symmetry), we can calculate the canonical Debye specific heat
for acoustic phonons in 3D (bulk) materials from the general expression

(Eq. (3.5)):
CUD3D—Z/ 27rd 8T 3D2/hvgaVeK8f dk

-y / Y Mg K 0y ey
0 (2r)® 9T

P

= Z/ o IBE Dy ()i

hw?  Ofpp
_Z/ 27293 9T dw

g ave

T\? [frrm zterdx
= .k / T 3.18
e (9D> 0 (e —1)° (3.18)

where x = kh—T, and the last equality derives from (a) the definition of the
temperature derivative of the distribution function (Eq. (3.6)), (b) the defi-
nition of group velocity in terms of unit cell density and Debye temperature
(Eq. (3.14)) and (c) the assumption that the three acoustic phonon branches
can be combined through a single Debye group velocity (thus eliminating
the branch summation by multiplying the integral by a factor of 3). This
latter approximation should be taken with caution; again, the definition of
the group velocity must be appropriate to the assumptions invoked.

The final Debye specific heat expression in Eq. (3.18) is a much-
celebrated result, despite the fact that the integral is not generally reducible
to an analytic expression. Often, the extreme temperature limits can be
used to determine limiting expressions for low and high temperatures rela-
tive to the Debye temperature. For the low-temperature limit:

T 3
Cy,D,3Dlow ~ 234nakB <%) (T < aD) (319)
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This result indicates that, at low temperatures, the acoustic phonon specific
heat increases as T for a 3D material, and we will find below that the factor
of 3 derives from the dimensionality of the material (e.g., the temperature
dependence for 2D materials is 7?). Conversely, for very high temperatures
(relative to 6p), the result becomes independent of temperature:

Cv,D,3Dhigh = 3N.kp (T > 6p). (3.20)
The temperature-independence of the latter result is caused by the capping
of energy states imposed by the maximum phonon energy associated with
f0p. In effect, any increases in temperature must be accommodated by
increasing the phonon populations of states that are already well occupied
at or below 0p, as opposed to the situation at very low temperatures for
which empty states can be filled when temperature increases. The high-
temperature result is called the “Law of Dulong and Petit” (Ashcroft and
Mermin, 1976).

3.2.2 Optical Phonon Specific Heat

Clearly, the Debye specific heat model is well suited for phonon branches
that exhibit a linear-like behavior through the origin of the dispersion curve
(e.g., acoustic branches with shapes like quarter sine waves). However, this
model is dubious for optical phonons, which exhibit relatively flat dispersion
curves that intercept the frequency (energy) axis at non-zero values (see
Fig. 1.18). Einstein (1906) proposed a general model for phonon specific
heat that assumes such flat dispersion behavior by assigning a single phonon
frequency to each branch. While the intention was to apply this model for
all branches, later developments, such as the Debye model (Debye, 1912)
described above, revealed clearly that this model is best applied to optical
phonon branches only.

The derivation of the Einstein model for specific heat generally follows
that of Section 3.2.1. It differs in the assumption that all phonons in the
branch of interest oscillate at a single frequency wg, leading to the definition
of the Einstein temperature 65:

Op = —2. (3.21)

For convenience, we retain the summation form throughout the deriva-
tion. Using this dispersion relation (i.e., w = constant = wg) in the general
integral expression for internal energy U (Eq. (3.2)) results in:

U= zk:ZhwEng (wg,T). (3.22)
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Because the frequency does not depend on wavevector in the Einstein ap-
proximation, the entire argument can be brought out of the summation.
Then after differentiating with respect to temperature and dividing by vol-
ume (i.e., L9), the Einstein specific heat becomes:

Cy,E = hz;dE afBE wE’ 221

hw
o 2 (hwE)/kBT E
ZnahwE (kBT2)

X
= nakp 7(€Xf_ i (3.23)

where 7, is the number of allowable states (i.e., unit cells) per unit real
‘volume’, and xg = (fwg)/(kgT) = 0g/T.

For many problems, the Einstein temperature will be much higher than
the real temperature, such that the optical phonon states are sparsely occu-
pied, or xg > 1. In this limit, Eq. (3.23) gives ¢, ~ 0. In such cases, the
Debye analysis for only the acoustic branches suffices to characterize the to-
tal phonon specific heat. Conversely, for very high temperatures (xg < 1),

2
we find from Xlgrgo % =1 that:

Co,E = ZﬂakB (T > 0E). (3.24)

Thus, in spite of the differences with the Debye model, the Einstein result
reduces to the Debye model’s high-temperature limit (i.e., the Law of Du-
long and Petit, see Eq. (3.20)), assuming three phonon branches (i.e.,
p=3).

A comparison of the Debye and Einstein models is shown in Fig. 3.3,
in which both the low-temperature differences and high-temperature con-
vergence are clearly apparent. However, we emphasize that the high-
temperature limit for the Einstein model typically requires unusually high
temperatures because optical phonon frequencies of most materials corre-
spond to much higher energies than the equivalent thermal energy, i.e.,
wg > kT /h. However, each of these models can be accurate for all tem-
peratures in the correct context. The important point to remember is that
the Debye model is appropriate for acoustic phonons, while the Einstein
model (particularly Eq. (3.23)) should be used for optical phonons.
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Fig. 3.3 Comparison of specific heat dependence on temperature, as predicted by the
Debye and the Einstein model. The specific heats, derived from both the models, con-
verge at low and high temperatures.

3.2.3 Electron Specific Heat

The analysis of specific heat for electrons begins with a subtle modification
of the internal energy expression of Eq. (3.2):

_2ZZEJ) )fEp [Eip(k), T], (3.25)

where the pre-factor ‘2’ accounts for spin degeneracy, and the summation
over p relates to electronic bands instead of phonon branches. Once again,
mathematical convenience dictates the replacement of the k-space summa-
tion with an integral by invoking the electron density of states (Eq. (2.22))
and expressing the energy on a volumetric basis:

Ue = /OO Efo,(E,T)D(E)dE, (3.26)
0

where the factor ‘2’ has now been absorbed into the density of states (cf.,
Eq. (2.22)).
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Another subtlety of the analysis for electrons derives from the Pauli ex-
clusion principle, which dictates that some energy states must be occupied
even at absolute zero temperature. The highest such occupied energy is
the Fermi energy, Er, which can be defined in terms of the integral form
of electron density 7,:

o0 Er
Ne = / fep(E, T)D(E)E = D(E)dE, (3.27)
0 0

where the latter equality derives from the fact that the Fermi-Dirac func-
tion is unity below the Fermi energy and zero above it at zero absolute
temperature. In order to keep the derivation more general, we will refrain
from deriving an explicit expression for Er, because doing so would require
us to assume a specific form of D(FE).

To assist in deriving the electron specific heat, an alternative specific in-
ternal energy ux can be defined to simplify the subsequent integral analysis:

ux = ue — Epne (3.28)

-/ " Ef2.p(B, T)D(E)IE - / " Bp (B, T)D(B)E

- /OOC (E — Ep)fop(E, T)D(E)dE. (3.29)

This contrivance is useful because the subtracted term in Eq. (3.28) is a
constant, resulting in a null temperature derivative. Using Eq. (3.27) this
constant term can be expressed as an integral involving the distribution
function and density of states. The final equality (Eq. (3.29)) contains
the difference (E — Er), which also appears in the distribution function
fop(E,T) through the common and broadly valid assumption of equality
between the electrochemical potential p (which exhibits a significant tem-
perature dependence only at extremely high temperatures for which the
thermal energy approaches the Fermi energy; see Eq. (2.11)) and the Fermi
energy Er (which is by definition a constant) (Kittel, 2007).

The electron specific heat can now be expressed by the temperature
derivative of ux:

_Ou _ Oux (> . Offp
Coe = 55 = _/0 (E — Ep)=57P D(E)dE. (3.30)

The temperature derivative of the Fermi-Dirac distribution function is non-
negligible only in a small region about the Fermi energy. Therefore, the
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density of states term can be replaced with an integral pre-factor of D(Er),
resulting in:

00 2, x

Coe A D(EF)/ (B — Ep)afFD dE = /cngD(EF)/
0

or —Bp (e® 4 1)2
kT

where x = (F — Ep)/(kgT). Finally, recognizing that typically Ep >>
kpT, the lower bound of the integral can be approximated as —oo, enabling
analytical evaluation:

2
Coe A %kQBTD(EF). (3.32)

Substituting the density of states for three-dimensional free-electron metals
(see Eq. (2.22)), the specific heat becomes:

c ~ kaB\/ 2mEF
v,e 3h3
7T21<:QB77€T
2Ep

T

(3.33)

where the latter equality derives from the definition of the Fermi energy
for a parabolic band (Eq. (1.40)). A distinguishing feature of the final
result is the linear temperature dependence, which can be used to assess
the relative contributions of electrons (~ T'*) and phonons (~ T?) in metals
at low temperatures (i.e., well below the Debye and Fermi temperatures).

3.2.4 Specific Heat for Low-Dimensional Structures

The specific heat integral in k-space (Eq. (3.5)) can be converted to fre-
quency space generally (i.e., without invoking a dispersion assumption such
as the Debye approximation) for phonons through the use of the density of
states:

E; 5fBE
Cy = aT Z / p ZLBE Jx

— Z/ﬁwa afBEd (3.34)

where d represents the dimensionality of the problem (i.e., “dD = 1D” for
d=1).
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Then, applying the Debye model’s density of states, a general expression
for the Debye specific heat of acoustic phonons becomes:

T \? [Op/m gd+lezdy
Cy,D = d x T]akB E < ) / 71)2 (335)
0 —
p

aD,p (em

This result reinforces the memorable result that the specific heat for low
temperatures is proportional to temperature raised to the power of the di-
mensionality for temperatures well below the Debye temperature, as shown
in Fig. 3.4. The results indicate that the power law relationship ¢, ~ T¢
holds well up to T' =~ 0.10p. Consequently, the temperature dependence
of specific heat (a property that is relatively easy to measure) provides a
means of assessing the effective dimensionality of the medium under study.

1.0

normalized specific heat, ¢, /(17,k,)

0.5 1.0 1.5 2.0

normalized temperature, 7/6,

Fig. 3.4 Variation of specific heat with temperature for low-dimensional structures,
as predicted by the Debye model. Notice the T% dependence of specific heat at low
temperatures, where d is the dimensionality of the medium.
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3.3 Thermal Conductivity from Kinetic Theory

The foregoing expressions for specific heat serve important roles in de-
termining a second prominent thermal property—thermal conductivity.
Various approaches are available to derive the latter quantity, and here
we offer the most common and intuitive derivation. The subsequent chap-
ters consider other derivation approaches that are generally more rigorous
and versatile.

Kinetic theory covers broadly the behavior of particles in an ensemble
and can be used to derive many thermophysical properties (Vincenti and
Kruger, 1967). The basic theory treats particles as independent entities
that can collide, or scatter, with each other or with other objects such as
defects and boundaries. As such, the approach is somewhat agnostic to the
type of particle, as long as its velocity and ability to carry a property (such
as thermal energy) are known.

Figure 3.5 shows this scenario schematically. An energy-carrying par-
ticle (e.g., electron or phonon in the present context) sits at the vertical
position z + A, within a field of particles with average intensive internal
energy u that depends on position z. The particles move in three dimen-
sions randomly and experience a collision one time for every distance A
traveled, on average. The distance A is termed the mean free path, or scat-
tering length. In the case of the particle highlighted in Fig. 3.5, the vertical
(z) component of its distance traveled before its next collision is A, as its
direction makes a polar angle # with the z axis.

The heat flux rate (per unit area) can be expressed in terms of the
z-components of the particle velocity and mean free path:

1
q = 30z [u(z—=A.) —u(z+ A, (3.36)
where the % term derives from the fact that only half the particles move
up from z — A, or down from z 4+ A, and v, is the z-component of the
particle’s velocity. The energy difference in Eq. (3.36) can be expanded as
a Taylor series:
ou

u(z+A;) =ulz—A,) + 2 (2A.) + 9 (A2). (3.37)

z

Using A, = Acosf and v, = vcosf, the heat flux becomes:

% = — (cos0) UA%. (3.38)

1
qz ~ _vaz
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z-axis

Fig. 3.5 A schematic depicting the kinetic theory of thermal conductivity. An atom
at z + A, travels a distance equivalent to its mean free path, A (A. in the z-direction),
before experiencing a collision. This atomic motion results in a heat flux, along the
z-direction, which is a function of the particle velocity and the particle mean free path.
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The foregoing steps assumed a specific direction of motion, but the ac-
tual directions within the ensemble are randomized. Therefore, an average
heat flux must be defined by integrating over all possible directions through
the three-dimensional solid angle d$2 = sin 8dfdy, where 1) is the azimuthal
angle:

1 2m z
(") = Aau —/ /2 cos?0 sin Oddy
2 0 0

—vA—-

|
|
|
<
I

(3.39)

Assuming that the scattering processes are frequent enough to establish
local thermodynamic equilibrium (which is not the case for predominantly
ballistic transport), the chain rule can be applied to convert the energy
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gradient to a temperature gradient:

Ou  OudT

8z 0T 0z
Importantly, the first term on the right side is the previously developed
specific heat (Eq. 3.1), and the average heat flux can be expressed as:

; 1 oudT 1 oT
= —— A—— = — -Cy A ) 41
(€2) = —3vhar5, 3" 52 (3.41)

K

(3.40)

where the final form matches that of the classical Fourier’s law, ¢/ =
—k(0T'/0z). The foregoing derivation therefore relates a material’s thermal
conductivity x to the specific heat, velocity, and mean free path of thermal
energy carriers:
1
K= gcva. (3.42)
Some important issues and caveats concerning this expression follow:

e Thermal conductivity inherits the temperature dependence of the
specific heat, velocity, and mean free path. We have considered
elements of the first two, the last remains for the subsequent two
chapters.

e The derivation above was somewhat casual regarding the variability
of carrier velocity, which depends on the distribution function and
occupation statistics. We will consider these issues further in the
next chapter.

e For very small materials, any or all of the three components can
be influenced substantially by the size of the domain under study,
its lattice and defect structure, and its temperature.
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Example Problems

7

Problem 3.1: Graphene ZA branch specific heat

In this chapter, we obtained integral expressions for the specific heat
of branches that can be approximated with a linear dispersion (De-
bye model) and constant dispersion (Einstein model). The ZA branch
of graphene, which represents out-of-plane vibrations (see Appendix),
is however closely approximated near the Brillouin zone center by a
quadratic dispersion relation of the form w = CK? where C is a con-
stant.

(a) Determine the maximum cutoff wavevector K¢ and the corre-
sponding cutoff frequency wg in terms of the unit cell density 7,.

(b) Obtain an integral expression for the specific heat of the ZA branch
as a function of temperature.

The low temperature specific heat of graphene shows a linear depen-
dence on temperature (see Fig. 3.6) which then becomes quadratic for
temperatures greater than 100 K. Can you explain this behavior based
on your knowledge of the dispersion relation of graphene (see Chapter 2
Examples for a plot) and the expression you have just obtained in this
problem?

Solution

(a) The cutoff wavevector K¢ is found by equating the number of
states in k-space within a circle of radius K¢ to the total number
of unit cells N.

2

TKG

27\ 2

()

where 7, is the number of unit cells per unit area. The cutoff
frequency wg is then obtained from the dispersion relation:

=N, Kq=(4ma)"?, (3.43)

wg = 4CmN,. (3.44)
(b) The specific heat ¢, z4 is given by:
_ [, 9fEE
Cy,ZA = hw Dg2p(w)dw, (3.45)

0 aT
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where Dg 2p(w) is the two-dimensional density of states under the
quadratic dispersion model:

1 dN
Daanlw) =735
1 dN dK
L2 dK dw

_Ld [ wKE 1
- L2dK \(2r/L)? ) 2CK

1
= —. A4
4nC (3.46)
Thus the DOS of the ZA branch is a constant. Substituting the
above expression into the integral in Eq. (3.45), and using the

derivative of the Bose-Einstein distribution function, we obtain:

. 1 /“’Q b exp(hw/kpT) hw
vIA T YnC 0 (exp(hw/kpT) — 1)? kpT?

T 0q/r .’IJ2€$
— nakp [ — T i, 4
who (5) [} e (347

where x = hw/kpT and 6g = hwg/kp (analogous to the Debye
temperature 6p). For temperatures much less than 6g, the up-
per limit of the integral in Eq. (3.47) can be taken to be oo, and
the specific heat is proportional to 7. This result explains the
linear dependence of the specific heat of graphene at low tempera-
tures. At higher temperatures, the ZA branch becomes fully popu-
lated and the linear LA and TA modes contribute to specific heat.
This explains the quadratic dependence at higher temperatures
(see Section 3.2.4).

dw
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Fig. 3.6 Temperature dependence of the specific heat of graphene and graphite. Figure
originally published by Pop et al. (2012). Used with permission.

Problem 3.2: Specific heat of metals

Figure 3.7 shows experimental measurements of the heat capacity of
potassium at low temperatures. The following temperature dependence
is observed:

/T = 2.08 + 2.57T2,
where ¢, /T has units of mJ/mol K? and T is in K.

(a) Provide analytical expressions for the y-intercept and slope of the
graph. Hint: Neglect any optical phonon contribution to specific
heat as the experimental data are provided for low temperatures.

(b) Assuming that the conduction electron density in potassium is
1.34%10%2 cm ™3, determine the Fermi energy of potassium. Note
that the experimental data are expressed per mole of potassium,
while the heat capacity expressions derived in this chapter are per
unit volume. Assume the density and atomic mass of potassium
are 0.862 g/cc and 39 amu respectively.

(c) Potassium has a body-centered cubic (BCC) structure (1 atom
per primitive unit cell) with an atomic density of 1.33x10%2




80

Thermal Energy at the Nanoscale

atoms/cm®.  Determine the Debye temperature of potassium
assuming that the three acoustic branches are replaced by a single
branch of uniform group velocity.

Solution

(a) Specific heat ¢, can be expressed as a sum of electron and phonon

contributions:
Cy = Cy,e T Cup
_ ke g, 23400k g (3.48)
-~ 2Ep 63, ' '
Hence,
27.2
Co TkENe 234n.kB o
— = T°. 3.49
T~ 2Er 05 (8.49)
——
y—intercept slope

(b) Using the experimental data and the result from part (a),

w2kEne
2Er

Substituting kp = 1.3806 x 10722 J/K, n. = 1.34 x 10?2 cm—3, we

obtain Ep = 2.74 x 1071% J = 1.71 eV.
(¢) From the slope of the given graph and the result in part (a),

2341,k
63,

Substituting 1, = 1.33 x 10?2 atoms/cm3, we obtain fp = 91.1 K.

2.08 mJ/mol K* = 4.59 x 107° J/cc K* = (3.50)

2.57 mJ/mol K* = 5.68 x 1075 J/cc K* = (3.51)
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Fig. 3.7 Temperature dependence of the specific heat of potassium and sodium. Figure
originally published by [Lien and Phillips (1964)]. Used with permission.

Problem 3.3: Thermal conductivity from kinetic theory

In this chapter, we derived the thermal conductivity of a three-
dimensional material from kinetic theory. Perform a similar analysis for
one- and two-dimensional materials to obtain the following generalized

expression:

K = =CyVA,

d
where d is the dimension and can take the values 1, 2 or 3. Also
derive an integral expression for the thermal conductivity and observe
the temperature dependence at low temperatures. Assume that the
velocity and mean free path are independent of temperature and carrier
energy.

Solution

The following expression for heat flux ¢” was obtained in the chapter:

q) ~ —vaz@ = —v,A Ou 0T = —cvvazg—T
z

P T (3.52)
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In 1D, v, =v, A, = A.

T
q = —CUUAZ—Z. (3.53)

In 2D, v, = vcosf, A, = Acosf. We average the heat flux over an
angle of 7 radians.

z

q = —cvaa—Tl/ cos? 0df
Oz Jo

zZ T
1 oT
= —§CUUAE. (354)

In 3D, the heat flux is averaged over a solid angle of 27 steradians.

T 1 2 w/2
q. b / / cos® 0 sin 0dfdy)
0 0

oz 2m
1 oT
= —gCUUA%. (355)

From Egs. (3.53)—(3.55), thermal conductivity x in d dimensions is
given by,
1

K= ECUUA. (3.56)

Substituting the low temperature result for specific heat ¢,,, we find:

TN\ [ zd+lerdy
KR = nakBUA <%) /0 W (357)

Note that the Debye approximation is used in the above expression
for specific heat. Also we have neglected multiple phonon polariza-
tions. At low temperatures, the thermal conductivity shows the same
temperature dependence as the specific heat and scales as 7.
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Problem 3.4: Specific heat of a diatomic chain

Consider the diatomic chain studied in Chapter 1 with atomic masses
my, mg (M2 > mq) and a uniform atom spacing of a. Also assume a
uniform spring constant g between all adjacent atoms. In this problem,
we calculate the specific heat of the diatomic chain using the Debye
model for the acoustic branch and the Einstein model for the optical
branch. Assume that the constant frequency wg in the Einstein model
is an average of the minimum and maximum frequencies of the optical
branch.

(a) Show that the ratio of Einstein and Debye temperatures can be
expressed in terms of the mass ratio ms/mq as follows:

0 1
3:_<mu/@+l+@)
O0p = ma mq mi

(b) Calculate the normalized acoustic and optical phonon specific heats
(normalized by n,kp) at normalized temperatures of T/0p = 0.2, 1
and 2. Assume a mass ratio ma/mq = 2. Also provide an intuitive
explanation of your numerical results.

(c) Use the online Chapter 3 CDF tool! to evaluate the acoustic and
optical contributions to the total specific heat as a function of tem-
perature. Also observe how these contributions change with vary-

Z

ing mass ratio. Again, provide a physical explanation for the trend

OW

in the curves with varying mass ratio.

Solution

(a) The Einstein frequency wpg is calculated by taking an average of
the minimum and maximum frequencies of the optical branch. See
Section 1.6 for derivations of the minimum (wy(K = w/a)) and
maximum (w4 (K = 0)) frequencies.

wp = (s (K = 0) + w, (K = n/a))

)
:@(Vmﬁmﬁ\/m_?). (3.58)

mimsa

ISee http://nanohub.org/groups/cdf_tools_thermal_energy_course/wiki
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The Debye frequency wp is just the product of the group velocity
of the acoustic branch at the Brillouin zone center and the Debye
cutoff wavevector Kp. In 1D, Kp = 7, = m/a since the unit
cell density is 1/a. See Section 1.6 for a derivation of the group
velocity of the acoustic branch at the center of Brillouin zone.

wp =ve(K =0)Kp

—u gp ™
2mims a

. g
= (3.59)

From Egs. (3.58) and (3.59), the ratio of Einstein and Debye tem-
peratures is given by:

0 1
_E:“_E:_<‘/@+,/@+,/1+@>. (3.60)
0p wp T mso mi my

The specific heat of the acoustic branch is given by (see Section

3.2.4):
T Op/r 4267y
v.D = Nokp | — —_—. .61
C’D n B(oD)‘/O (ez—1)2 (36 )

For T'/6p = 0.1, 1 and 2, ¢, p/n.kp = 0.328, 0.973 and 0.993 re-
spectively (the integral was evaluated numerically). Observe that
the specific heat is very close to the Dulong and Petit limit of
Cv,p = Ngkp for temperatures higher than the Debye temperature.
The specific heat of the optical branch is given by (see Section
3.2.2):

2 oXE
Co.E = NakB (€XE (3.62)

(exe —1)2
where xg = 0g/T. For mao/mi = 2, 0g/0p = 1.226 (using
the result derived in part (a) of this problem). Hence 0g/T =
1.2260p/T. For T/0p = 0.1,1 and 2, xg = 12.26, 1.226 and
0.613 respectively. Thus ¢, g/n.ks = 0.0007, 0.884 and 0.969 for
T/6p = 0.1, 1 and 2 respectively. Note that the optical phonon
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Table 3.1 Acoustic and optical phonon specific
heats of a diatomic chain with ma/m1 = 2.
T Cy,D Cy,E Cy,D

i x 100%
op nakp nakp Cv,D +Cu.E
0.1 0.328 0.0007 99.78%

1 0.973 0.884 52.4%

2 0.993 0.969 50.61%

specific heat is almost zero for T/0p = 0.1. This is because the
high frequency optical mode is negligibly populated at such low
temperatures. The optical phonon specific heat also approaches
the Dulong and Petit law for high temperatures.

Table 3.1 shows a summary of the results calculated. At low tem-
peratures, the heat capacity of the acoustic branch dominates that
of the optical branch. For temperatures above the Debye temper-
ature, ¢y, p/cy, 5 ~ 1 indicating that both the acoustic and optical
modes contribute equally to specific heat.

Figure 3.8 shows snapshots from the online Chapter 3 CDF tool
where the acoustic and optical contributions to the total specific
heat are plotted as a function of temperature. Clearly the acoustic
branch dominates the specific heat at low temperatures, and the
fractional contributions tend to 0.5 for very high temperatures.
As the mass ratio increases, the Einstein frequency moves farther
from the Debye frequency. Hence the temperature at which the
acoustic and optical contributions become equal also increases with
increasing mass ratio.
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v,tot

Fraction of specific heat contribution, ¢, ./c
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