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Preface

Engineers and scientists working on electronic materials and devices need

a working knowledge of “near-equilibrium” (also called “linear” or “low-

field”) transport. By “working knowledge” we mean understanding how to

use theory in practice. Measurements of resistivity, conductivity, mobility,

thermoelectric parameters as well as Hall effect measurements are com-

monly used to characterize electronic materials. Thermoelectric effects are

the basis for important devices, and devices like transistors, which operate

far from equilibrium, invariably contain low-field regions (e.g. the source

and drain) that can limit device performance. These lectures are an in-

troduction to near-equilibrium carrier transport using a novel, bottom up

approach as developed by my colleague, Supriyo Datta and presented in

Vol. 1 of this series [1]. Although written by two electrical engineers, it is

our hope that these lectures are also accessible to students in physics, ma-

terials science, chemistry and other fields. Only a very basic understanding

of solid-state physics, semiconductors, and electronic devices is assumed.

Our notation follows standard practice in electrical engineering. For exam-

ple, the symbol, “q”, is used to denote the magnitude of the charge on an

electron and the term, Fermi level (EF ), is used for the chemical potential

in the contacts.

The topic of near-equilibrium transport is easy to either over-simplify

or to encumber by mathematical complexity that obscures the underlying

physics. For example, ballistic transport is usually treated differently than

diffusive transport, and this separation obscures the underlying unity and

simplicity of the field. These lectures provide a different perspective on tra-

ditional concepts in electron transport in semiconductors and metals as well

as a unified way to handle macroscale, microscale, and nanoscale devices.

A short introduction to the Boltzmann Transport Equation (BTE), which

vii
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is commonly used to describe near-equilibrium transport, is also included

and related to the approach used here. Throughout the lectures, concepts

are illustrated with examples. For the most part, electron transport with

a simple, parabolic energy band structure is assumed, but the approach is

much more general. A short chapter shows, for example, how the same ap-

proach can be applied to the transport of heat by phonons, and to illustrate

how the theory is applied to new problems. The lectures conclude with a

case study – near-equilibrium transport in graphene.

It should, of course, be understood that this short set of lectures is only

a starting point. The lectures seek to convey the essence of the subject and

prepare students to learn. The additional topics needed to address specific

research, development, and engineering problems on their own. Online ver-

sions of these lectures are available, along with an extensive set of additional

resources for self-learners [2]. In the spirit of the Lessons from Nanoscience

Lecture Note Series, these notes are presented in a still-evolving form, but

we hope that readers find them a useful introduction to a topic in electronic

materials and devices that continues to be relevant and interesting at the

nanoscale.

Mark Lundstrom

Changwook Jeong

Purdue University

June 18, 2012

[1] Supriyo Datta, Lessons from Nanoelectronics: A new approach to trans-

port theory, Vol.1 in Lessons from Nanoscience: A Lecture Notes Series,

World Scientific Publishing Company, Singapore, 2011.

[2] M. Lundstrom, S. Datta, and M.A. Alam, “Lessons from Nanoscience: A

Lecture Note Series”, http://nanohub.org/topics/LessonsfromNanoscience,

2011.
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