NEAR-EQUILIBRIUM TRANSPORT

Fundamentals and Applications

Lessons from Nanoscience: A Lecture Note Series ISSN: 2301-3354

Series Editors: Mark Lundstrom and Supriyo Datta (*Purdue University, USA*)

"Lessons from Nanoscience" aims to present new viewpoints that help understand, integrate, and apply recent developments in nanoscience while also using them to re-think old and familiar subjects. Some of these viewpoints may not yet be in final form, but we hope this series will provide a forum for them to evolve and develop into the textbooks of tomorrow that train and guide our students and young researchers as they turn nanoscience into nanotechnology. To help communicate across disciplines, the series aims to be accessible to anyone with a bachelor's degree in science or engineering.

More information on the series as well as additional resources for each volume can be found at: http://nanohub.org/topics/LessonsfromNanoscience

Published:

- Vol. 1 Lessons from Nanoelectronics: A New Perspective on Transport by Supriyo Datta
- Vol. 2 Near-Equilibrium Transport: Fundamentals and Applications by Mark Lundstrom and Changwook Jeong

Lessons from Nanoscience: A Lecture Note Series

Vol.

NEAR-EQUILIBRIUM TRANSPORT

Fundamentals and Applications

Mark Lundstrom Changwook Jeong

Purdue University, USA

Published by

World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Lessons from Nanoscience: A Lecture Note Series — Vol. 2 NEAR-EQUILIBRIUM TRANSPORT Fundamentals and Applications

Copyright © 2013 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4327-78-7 ISBN 978-981-4355-80-3 (pbk)

Printed in Singapore.

То

Cason Kossuth Lundstrom and Sunyoung, Hyebin, and Seyeon. This page intentionally left blank

Preface

Engineers and scientists working on electronic materials and devices need a working knowledge of "near-equilibrium" (also called "linear" or "lowfield") transport. By "working knowledge" we mean understanding how to use theory in practice. Measurements of resistivity, conductivity, mobility, thermoelectric parameters as well as Hall effect measurements are commonly used to characterize electronic materials. Thermoelectric effects are the basis for important devices, and devices like transistors, which operate far from equilibrium, invariably contain low-field regions (e.g. the source and drain) that can limit device performance. These lectures are an introduction to near-equilibrium carrier transport using a novel, bottom up approach as developed by my colleague, Supriyo Datta and presented in Vol. 1 of this series [1]. Although written by two electrical engineers, it is our hope that these lectures are also accessible to students in physics, materials science, chemistry and other fields. Only a very basic understanding of solid-state physics, semiconductors, and electronic devices is assumed. Our notation follows standard practice in electrical engineering. For example, the symbol, "q", is used to denote the magnitude of the charge on an electron and the term, Fermi level (E_F) , is used for the chemical potential in the contacts.

The topic of near-equilibrium transport is easy to either over-simplify or to encumber by mathematical complexity that obscures the underlying physics. For example, ballistic transport is usually treated differently than diffusive transport, and this separation obscures the underlying unity and simplicity of the field. These lectures provide a different perspective on traditional concepts in electron transport in semiconductors and metals as well as a unified way to handle macroscale, microscale, and nanoscale devices. A short introduction to the Boltzmann Transport Equation (BTE), which is commonly used to describe near-equilibrium transport, is also included and related to the approach used here. Throughout the lectures, concepts are illustrated with examples. For the most part, electron transport with a simple, parabolic energy band structure is assumed, but the approach is much more general. A short chapter shows, for example, how the same approach can be applied to the transport of heat by phonons, and to illustrate how the theory is applied to new problems. The lectures conclude with a case study – near-equilibrium transport in graphene.

It should, of course, be understood that this short set of lectures is only a starting point. The lectures seek to convey the essence of the subject and prepare students to learn. The additional topics needed to address specific research, development, and engineering problems on their own. Online versions of these lectures are available, along with an extensive set of additional resources for self-learners [2]. In the spirit of the *Lessons from Nanoscience* Lecture Note Series, these notes are presented in a still-evolving form, but we hope that readers find them a useful introduction to a topic in electronic materials and devices that continues to be relevant and interesting at the nanoscale.

> Mark Lundstrom Changwook Jeong Purdue University June 18, 2012

- Supriyo Datta, Lessons from Nanoelectronics: A new approach to transport theory, Vol.1 in Lessons from Nanoscience: A Lecture Notes Series, World Scientific Publishing Company, Singapore, 2011.
- [2] M. Lundstrom, S. Datta, and M.A. Alam, "Lessons from Nanoscience: A Lecture Note Series", http://nanohub.org/topics/LessonsfromNanoscience, 2011.

Acknowledgments

Thanks to World Scientific Publishing Corporation and our series editor, Zvi Ruder, for their support in launching this new lecture notes series. Special thanks to the U.S. National Science Foundation, the Intel Foundation, and Purdue University for their support of the Network for Computational Nanotechnology's "Electronics from the Bottom Up" initiative, which laid the foundation for this series.

Students at Purdue University, Norfolk State University, Dalian University of Technology, the University of Pisa, and attendees of the 2011 NCN Summer School served as sounding boards and proof-readers for these notes. Their comments and suggestions are appreciated as is the help of students who taught one of us (Lundstrom) enough LaTex to get the job done. Dr. Jesse Maassen's help with the final proof-reading is appreciated, and special thanks go to Dr. Raseong Kim, whose initial work was the genesis for these notes and who supplied the compilation of thermoelectric coefficients presented in the appendix. Finally, we acknowledge many discussions with Professor Supriyo Datta, whose ideas and thinking have strongly influenced this work. This page intentionally left blank

Contents

Preface		vii	
Act	knowle	dgments	ix
Lis	t of Fi	gures	XV
1.	Overv	view	1
	1.1	Introduction	1
	1.2	Diffusive electron transport	2
	1.3	Types of electron transport	4
	1.4	Why study near-equilibrium transport?	6
	1.5	About these lectures	6
	1.6	Summary	9
	1.7	References	9
2.	Gener	al Model for Transport	13
	2.1	Introduction	13
	2.2	Mathematical model	15
	2.3	Modes	18
	2.4	Transmission	23
	2.5	Near-equilibrium (linear) transport	26
	2.6	Transport in the bulk	27
	2.7	Summary	31
	2.8	References	31
3.	Resist	tance: Ballistic to Diffusive	33
	3.1	Introduction	33

	3.2	2D resistors: ballistic	35
	3.3	2D resistors: diffusive to ballistic	41
	3.4	Discussion	44
	3.5	Summary	55
	3.6	References	56
4.	Ther	moelectric Effects: Physical Approach	59
	4.1	Introduction	59
	4.2	Electric current flow: Seebeck effect	61
	4.3	Heat current flow: Peltier effect	66
	4.4	Coupled flows	70
	4.5	Thermoelectric devices	73
	4.6	Discussion	77
	4.7	Summary	80
	4.8	References	81
5.	Ther	moelectric Effects: Mathematics	83
	5.1	Introduction	83
	5.2	Driving forces for current flow	84
	5.3	Charge current	85
	5.4	Heat current	87
	5.5	Discussion	89
	5.6	Summary	102
	5.7	References	102
6.	An Ir	ntroduction to Scattering	105
	6.1	Introduction	105
	6.2	Physics of carrier scattering	106
	6.3	Transmission and mean-free-path	110
	6.4	Mean-free-path and scattering	112
	6.5	Discussion	114
	6.6	Summary	120
	6.7	References	120
7.	Boltz	mann Transport Equation	123
	71	Introduction	193
	79	The Boltzmann Transport Equation	194
	73	Solving the steady-state BTE	197
	1.0	Solving the steady state DID	141

Contents

	7.4 7.5 7.6 7.7	Transport coefficients	129 134 140 141
	7.8	References	142
8.	Near-	equilibrium Transport: Measurements	143
	8.1	Introduction	143
	8.2	Resistivity/conductivity measurements	146
	8.3	Hall effect measurements	148
	8.4	The van der Pauw method	151
	8.5	Temperature-dependent measurements	155
	8.6	Discussion	158
	8.7	Summary	165
	8.8	References	165
9.	Phone	on Transport	169
	9.1	Introduction	169
	9.2	Electrons and phonons	170
	9.3	General model for heat conduction	175
	9.4	Thermal conductivity	178
	9.5	Debye model for $M_{ph}(\hbar\omega)$	182
	9.6	Phonon scattering	184
	9.7	Discussion	187
	9.8	Summary	189
	9.9	References	190
10.	Grapl	hene: A Case Study	193
	10.1	Introduction	193
	10.2	Graphene	194
	10.3	Density-of-states and carrier density	197
	10.4	Number of modes and conductance	198
	10.5	Scattering	199
	10.6	Conductance vs. carrier density	202
	10.7	Discussion	205
	10.8	Summary	209
	10.9	References	209
Ap	pendix	A Summary of Key Results	211

This page intentionally left blank

List of Figures

1.1	Illustration of diffusive electron transport in an n-type semicon-	
	ductor under bias	2
1.2	Illustration of a typical current vs. voltage characteristic for a	
	semiconductor like silicon	3
1.3	Illustration of a small organic molecule (phenyl dithiol) attached	
	to two gold contacts. The $I-V$ characteristics of small molecules	
	can now be measured experimentally. See, for example, L.	
	Venkataraman, J. E. Klare, C. Nuckolls, M. S. Hybertsen, and	
	M. L. Steigerwald, "Dependence of single-molecule junction con-	
	ductance on molecular conformation", <i>Nature</i> , 442 , 904-907,	
	2006	4
2.1	Illustration of a model nanoscale electronic device. The voltage,	
	V, lowers the Fermi level of contact 2 by an amount, qV	14
2.2	A simple, 2D electronic device with channel width, W and	
	length, L . For the calculation of the average x -directed velocity,	
	ballistic transport is assumed, i.e. the channel is much shorter	
	than a mean-free-path for scattering $\ldots \ldots \ldots \ldots \ldots \ldots$	19
2.3	Comparison of the density-of-states, $D(E)$, and number of chan-	
	nels, $M(E)$, in 1D, 2D, and 3D. Parabolic energy bands are	
	assumed in each case	22
2.4	A simple, 2D electronic device with channel width, W and	
	length, L . In this case, diffusive transport is assumed — the	
	channel is many mean-free-paths long $\hfill \ldots \hfill \ldots $	23
2.5	Illustration of diffusion in a channel many mean-free-paths	
	long	25

xvi	$Near-equilibrium\ Transport:\ Fundamentals\ and\ Applications$	
2.6	Illustration of how a near-equilibrium bulk conductor is concep- tually treated as a device with two contacts	29
3.1	Sketch of 1D, 2D, and 3D resistors. In this chapter, we will focus on 2D resistors, but the same techniques apply in 1D and 3D as well	34
3.2	Sketch of the Fermi function and its derivative vs. energy. The function, $-(\partial f_0/\partial E)$, is called the "Fermi window" for conduction	36
3.3	Experiments of van Wees, <i>et al.</i> experimentally demonstrating that conductance is quantized. Left: sketch of the device structure. Right: measured conductance. (Data from: B. J. van Wees, <i>et al.</i> , <i>Phys. Rev. Lett.</i> 60 , 848851, 1988. Figures from D. F. Holcomb, "Quantum electrical transport in samples of limited dimensions", <i>Am. J. Phys.</i> , 67 , pp. 278-297, 1999. Reprinted with permission from <i>Am. J. Phys.</i> Copyright 1999,	
3.4	American Association of Physics Teachers)	37
3.5	Illustration of how power is dissipated in a ballistic resistor	50
3.6	Energy band diagram of a ballistic resistor under bias illustrat- ing how we associate the internal voltage drop with the change in the electrochemical potential (also known as the quasi-Fermi	00
3.7	level)	51 55
4.1	Sketch of an n-type semiconductor slab with its two contacts open-circuited and with contact 2 hotter than contact 1	61
4.2	Sketch of equilibrium Fermi functions vs. energy for two different	01
-	temperatures	62

4.3	Energy band diagrams for an n-type semiconductor for two dif- ferent conditions: (a) equilibrium, and (b) $V_2 > V_1$. In the second case, T_{L2} may be the same as or different than T_{L1}	63
4.4	Measured Seebeck coefficient for n- and p-type Ge at $T_L = 300$ K. The line is a calculation using methods in Lecture 5 assuming parabolic energy bands and a constant mean-free-path for backscattering. (Data taken from T.H. Geballe and G.W. Hull, "Seebeck Effect in Germanium", <i>Physical Review</i> , 94 , 1134, 1954)	65
4.5	Illustration of the Peltier effect. The existence of an electric current causes heat to be absorbed at one contact and emitted at the other. If the direction of the current is reversed, then the contact that absorbs heat and the one that emits heat are interchanged	66
4.6	Illustration of heat absorption and emission in the presence of a current flow — the Peltier effect. (a) a lightly doped semiconductor, and (b) a heavily doped semiconductor	67
4.7	Illustration of heat absorption at contact 1. Electrons in the metal with high enough energy escape into the semiconductor. To replace the electrons lost, new electrons flow in (near the Fermi energy) from the contact. To replace the lost energy of the electron gas, electrons absorb thermal energy from the lattice to restore the equilibrium Fermi-Dirc distribution	68
4.8	Schematic illustration of how a thermoelectric cooler operates .	74
4.9	Schematic illustration of how a thermeoelectric power generator operates. Using this device, heat is converted into electrical	74
4 10	One log TE device used for model colculations for a Politicn	14
4.10	cooler	75
4.11	Sketch of the Seebeck coefficient vs. Fermi level (left axis), con- ductivity vs. Fermi level (right axis), and power factor, <i>PF</i> (dashed line)	78
4.12	Illustration of Peltier cooling operation in terms of electron flow alone, rather than electrons and holes	79
4.13	Illustration of how the Seebeck coefficient is measured	80

5.1	Sketch of the Fermi functions of the two contacts when: (a) the two voltages are different but the temperatures are the same and (b) the two voltages are identical but the temperatures are different	85
5.2	Schematic illustration of heat absorption and emission in the generic device	88
5.3	Sketch of $M(E)$ vs. E for a 3D, parabolic band semiconductor	97
6.1	Sketch illustrating the characteristic times for carrier scattering. An ensemble of carriers with momentum directed along one axis is injected at $t = 0$. Carriers have, on average, experienced one collision at $t = \tau(E)$. The momentum of the initial ensemble has been relaxed to zero at $t = \tau_m(E)$, and the energy has relaxed to its equilibrium value at $t = \tau_E(E)$. (After Lundstrom, [1])	107
6.2	Illustration of a scattering event. An initial electron in state, \vec{p} , with wavefunction, ψ_i , interacts with a scattering potential, $U_S(\vec{r},t)$ and emerges in the state, \vec{p}' , described by the wavefunction, $\psi_f \ldots \ldots$	108
6.3	Illustration of charged impurity scattering. High energy carriers feel the perturbed potential less than low energy carriers and are, therefore, scattered less	110
6.4	A model calculation for transmission. A flux is injected at the left of a slab having a mean-free-path for backscattering of λ , and we seek to compute the flux that emerges from the right λ .	111
6.5	Illustration of forward and backscattering in 1D	113
7.1	Sketch of an electron trajectory in two-dimensional, $x-p_x$, phase space. We wish to determine the probability that the state indi- cated by the filled circle is occupied at time, t . This probability is the probability that the corresponding upstream state indi- cated by the open circle was occupied at time, $t - dt \dots \dots$	125
7.2	Illustration of how in-scattering and out-scattering affect the occupation probability of a state in phase space	127
7.3	Illustration of a planar sample showing how forcing a current in the x direction in the presence of a z-directed B-field leads to a deflection of electrons in the $-u$ direction	141

xviii

8.1	Sketch of a planar resistor with length, L , width, W , and cross- sectional area, $A = Wt$, where t is the thickness of the resistor. If t is large compared to the de Broglie wavelength of electrons, then the electrons in the resistor are three dimensional, but if t is small compared to the de Broglie wavelength, then electrons	
	are quantum mechanically confined in one dimension	145
8.2	Sketch of a planar resistor with two metal contacts	146
8.3	Sketch of a transmission line structure with a series of differently	
	between adjacent contacts vs the spacing between contacts	147
8.4	Sketch of a geomotry used to perform four-probe measurements of resistivity. This is a top view of a structure made of a thin film of material on a substrate. The structure is called a <i>Hall</i>	
	<i>bar</i> geometry because, as discussed in the next section, it is also	1/8
9 Б	Illustration of the accortial physics of the Hall effect	140
0.0	Illustration of the yan day Dayy method (A) Desistivity may	149
0.0	surements and (B) Hall effect measurements	152
8.7	Comparison of the van der Pauw geometry for resistivity mea- surements (A) with the corresponding measurements on a semi- infinite half plane (B). The results for geometry (B) are identical to those of geometry (A) under some fairly non-restrictive con- ditions identified by van der Pauw [5]	152
8.8	Sketch of a typical mobility vs. temperature characteristic. (A) General form of the characteristic. (B) Influence of charged	
8.9	impurity scattering on the characteristic	156
	magnetic field. Both the position vector, $\vec{r}(t)$ and the wavector, $\vec{k}(t)$, undergo a circular orbit $\ldots \ldots \ldots$	161
8.10	Illustration of how a <i>B</i> -field changes the 2D density-of-states. (A) in the absence of scattering and (B) in the presence of	
8.11	scattering	162
	mentation and Measurement)	164

9.1	Sketch of dispersions for (a) electrons and (b) phonons. Simpli- fied dispersions commonly used for analytical calculations are also shown as dashed lines. See Fig. 9.3 for examples of realistic dispersions in silicon	171
9.2	Sketch of a typical phonon dispersion showing the longitudinal acoustic (LA) and optical (LO) modes and the transverse acoustic (TA) and optical (TO) modes	172
9.3	Realistic computed dispersions along a [100] direction in sili- con. (a) electrons and (b) phonons. (Electron dispersion from Band Structure Lab, A. Paul, <i>et al.</i> , 2011, DOI: 10254/nanohub- r1308.18. Phonon dispersion after Jeong, <i>et al.</i> [5])	173
9.4	Sketch of a device for which we seek the heat flow from contact 1 (left) to contact 2 (right)	176
9.5	Plot of the window functions for electrons and phonons. Solid lines: 300 K and dashed lines: 50 K. (a) Electron window function as given by eqn. (9.22) and (b) phonon window function as given by eqn. (9.25). For electrons, the abscissa has both positive and negative values because the energy, $E - E_F$ can be positive or negative. For phonons, the abscissa is only positive because the phonon energy, $\hbar\omega$ is always greater than zero	178
9.6	Comparison of the actual distribution of channels in silicon with simple approximations. (a) Exact distribution of phonon channels (solid line) compared with the Debye approximation, eqn. (9.56) (dashed line). Also shown (right axis) are the win- dow functions at 300 K (solid line) and 50 K (dashed line). (The calculations for electrons use the methods described in [6].) (b) Exact distribution of electron channels (solid line) compared with the effective mass approximation, eqn. (5.55) (dashed line on top of the solid line). Also shown are the window functions at 300 K (solid line) and 50 K (dashed line). Phonon results are after Jeong, <i>et al.</i> [5]	185
9.7	Illustration of phonon scattering processes. (a) Normal or N-processes, which conserve phonon crystal momentum and (b) Umklapp or U-processes, which do not conserve crystal momentum	186

9.8	The measured and simulated thermal conductivity of bulk sil- icon as a function of temperature. (The calculated results use the methods of Jeong, <i>et al.</i> [5], and the data points are from C.J. Glassbrenner and G.A. Slack, "Thermal Conductivity of Silicon and Germanium from 3 K to the Melting Point", <i>Phys.</i> <i>Rev.</i> , 134 , A1058, 1964)	188
10.1	The band structure of graphene as computed from a simple tight-binding model. (a) $E(k)$ and (b) the Brillouin zone showing the six k-points where the conduction and valence bands meet two of which are distinct	195
10.2	Simplified hand structure of graphene for energies near the Dirac	100
10.2	point	196
10.3	The number of states between k and $k + dk$ is the shaded area, $2\pi k dk$, divided by the area associated with a k-state in two	
	dimensions	198
10.4	Comparison of the density-of-states and number of modes vs. en-	
	ergy for graphene	199
10.5	Illustration of the expected shape of the conductivity vs. carrier density characteristic for graphene. Two scattering mechanisms are assumed: 1) ionized impurity scattering and 2) ADP or short range scattering. Also shown is the expected shape of the ballistic characteristic	201
10.6	Illustration of the commonly used "back-gating" geometry to characterize the graphene conductivity vs. carrier density. In- stead of the two-probe measurement geometry sketched here, four-probe geometries can also be used to eliminate the influ-	
10.7	ence of the contacts \ldots gate voltage for graphene on SiO ₂ . Measured conductance vs. gate voltage for graphene on SiO ₂ . The conductivity vs. gate voltage characteristic, σ_S vs. V_G , was measured before exposure to potassium and after exposures of various times. (Reprinted by permission from Macmillan Pub- lishers Ltd: <i>Nature Phys.</i> , JH. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, "Charged-impurity	203
	scattering in graphene", 4, 377-381, copyright 2008) $\ldots \ldots$	204